【題目】如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則△AEF的周長=cm.
【答案】9
【解析】∵四邊形ABCD為矩形,
∴AD=BC,AC=BD,
又∵AB=6cm,BC=8cm
∴AC=BD=10cm,
∴AO=DO=5cm,
又∵點E、F分別是AO、AD的中點,
∴AE=AO=,AF=AD=4,EF=OD=,
∴C△AEF=AE+AF+FE=5+4=9.
所以答案是:9.
【考點精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識,掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2,以及對三角形中位線定理的理解,了解連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進A,B兩種型號的手機,已知每部A型號手機的進價比每部B型號手機進價多500元,每部A型號手機的售價是2500元,每部B型號手機的售價是2100元.
(1)若商場用50000元共購進A型號手機10部,B型號手機20部,求A、B兩種型號的手機每部進價各是多少元?
(2)為了滿足市場需求,商場決定用不超過7.5萬元采購A、B兩種型號的手機共40部,且A型號手機的數(shù)量不少于B型號手機數(shù)量的2倍.
①該商場有哪幾種進貨方式?
②該商場選擇哪種進貨方式,獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題正確的是( )
A.方程x2-4x+2=0無實數(shù)根;
B.兩條對角線互相垂直且相等的四邊形是正方形
C.甲、乙、丙三人站成一排合影留念,則甲、乙二人相鄰的概率是
D.若 是反比例函數(shù),則k的值為2或-1。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與計算:請閱讀以下材料,并完成相應(yīng)的任務(wù).
斐波那契(約1170﹣1250)是意大利數(shù)學(xué)家,他研究了一列數(shù),這列數(shù)非常奇妙,被稱為斐波那契數(shù)列(按照一定順序排列著的一列數(shù)稱為數(shù)列).后來人們在研究它的過程中,發(fā)現(xiàn)了許多意想不到的結(jié)果,在實際生活中,很多花朵(如梅花、飛燕草、萬壽菊等)的瓣數(shù)恰是斐波那契數(shù)列中的數(shù).斐波那契數(shù)列還有很多有趣的性質(zhì),在實際生活中也有廣泛的應(yīng)用.斐波那契數(shù)列中的第n個數(shù)可以用表示(其中,n≥1).這是用無理數(shù)表示有理數(shù)的一個范例.
任務(wù):請根據(jù)以上材料,通過計算求出斐波那契數(shù)列中的第1個數(shù)和第2個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形OBCD的邊OB在x軸正半軸上,反比例函數(shù)y= (x﹥0)的圖象經(jīng)過該菱形對角線的交點A,且與邊BC交于點F.若點D的坐標為(6,8),則點F的坐標是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠1=∠2,∠3=∠4,則下面結(jié)論中錯誤的是( )
A. △ADC≌△BCD B. △ABD≌△BAC C. △AOB≌△COD D. △AOD≌△BOC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列條件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶5∶6,③∠A=90°-∠B,④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有 ( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天小明騎自行車上學(xué),途中因自行車發(fā)生故障,修車耽誤了一段時間后繼續(xù)騎行,按時趕到了學(xué)校,如圖所示是小明從家到學(xué)校這一過程中所走的路程 s(米)與時間 t(分)之間的關(guān)系.
(1)小明從家到學(xué)校的路程共 米,從家出發(fā)到學(xué)校,小明共用了 分鐘;
(2)小明修車用了多長時間?
(3)小明修車以前和修車后的平均速度分別是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com