【題目】探究題:已知:如圖,,.求證:.

老師要求學(xué)生在完成這道教材上的題目證明后,嘗試對(duì)圖形進(jìn)行變形,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?

1)小穎首先完成了對(duì)這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是 .

2)接下來,小穎用《幾何畫板》對(duì)圖形進(jìn)行了變式,她先畫了兩條平行線,然后在平行線間畫了一點(diǎn),連接后,用鼠標(biāo)拖動(dòng)點(diǎn),分別得到了圖,小穎發(fā)現(xiàn)圖正是上面題目的原型,于是她由上題的結(jié)論猜想到圖圖中的與之間也可能存在著某種數(shù)量關(guān)系.于是她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.

請(qǐng)你在小穎操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:

(ⅰ)猜想圖之間的數(shù)量關(guān)系并加以證明;

(ⅱ)補(bǔ)全圖,直接寫出之間的數(shù)量關(guān)系: .

【答案】1)兩直線平行同旁內(nèi)角互補(bǔ);(2)(。,見解析;(ⅱ)見解析,.

【解析】

1)根據(jù)兩直線平行同旁內(nèi)角互補(bǔ)即可解決問題;
2)()猜想∠BDF=B+F.過點(diǎn)DCDAB.利用平行線的性質(zhì)即可解決問題;
)∠BDF與∠F之間的數(shù)量關(guān)系是∠F=B+BDF.利用平行線的性質(zhì)已經(jīng)三角形的外角的性質(zhì)即可解決問題;

解:(1)∵AB//CD,

∴∠B+BDC=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),

CD//EF(已知)
∴∠CDF+DFE=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∴∠B+BDF+F=B+BDC+CDF+DFE=360°.

故答案為:兩直線平行同旁內(nèi)角互補(bǔ).

(2))猜想

證明:過點(diǎn),

,

)補(bǔ)全圖形如圖所示:∠B、∠BDF與∠F之間的數(shù)量關(guān)系是∠F=B+BDF

理由:∵ABEF
∴∠1=F,
∵∠1=B+D,
∴∠F=B+BDF
故答案為∠F=B+BDF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某飲料廠開發(fā)了A、B兩種新型飲料,主要原料均為甲和乙,每瓶飲料中甲、乙的含量如下表所示.現(xiàn)用甲原料和乙原料各2800克進(jìn)行試生產(chǎn),計(jì)劃生產(chǎn)A、B兩種飲料共100瓶.設(shè)生產(chǎn)A種飲料x瓶,解析下列問題:

原料名稱 飲料名稱

A

20克

40克

B

30克

20克

(1)有幾種符合題意的生產(chǎn)方案寫出解析過程;

(2)如果A種飲料每瓶的成本為2.60元,B種飲料每瓶的成本為2.80元,這兩種飲料成本總額為y元,請(qǐng)寫出y與x之間的關(guān)系式,并說明x取何值會(huì)使成本總額最低?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】萬州長(zhǎng)江三橋于2019530日建成通車,三橋如一架巨大的豎琴屹立于平湖之上,巍峨挺拔,絢麗多彩,成為萬州靚麗的風(fēng)景。周末,小明和爺爺一同在大橋上勻速散步,他們散步的速度是50米/分,小明觀察到同向車道上駛過的公交車間隔時(shí)間是10分鐘40秒,假定同向的公交車都保持48千米/小時(shí)的速度勻速行駛(中途?空镜臅r(shí)間忽略不計(jì)),且公交車從車站發(fā)車的時(shí)間間隔是固定的,則車站每隔______分鐘發(fā)出一輛公交車。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊矩形紙板,長(zhǎng)為20cm,寬為14cm,在它的四角各切去一個(gè)同樣的正方形,然后將四周突出部分沿虛線折起,就能制作一個(gè)無蓋的長(zhǎng)方體盒子,如果這個(gè)無蓋的長(zhǎng)方體底面積為160cm2那么該長(zhǎng)方體盒子體積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖四邊形ABCD是一塊草坪,量得四邊長(zhǎng)AB=3m,BC=4m,DC=12m,AD=13mB=90°,求這塊草坪的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組:(1(用代入消元法);(2(用加減消元法)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,正方形的兩邊分別在正方形的邊上,連接.填空:線段的數(shù)量關(guān)系為________;直線所夾銳角的大小為________

2)如圖②,將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn),在旋轉(zhuǎn)的過程中,(1)中的結(jié)論是否仍然成立,請(qǐng)說明理由.

3)把圖②中的正方形都換成菱形,且,如圖③,直接寫出______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,∠C=90°AC=20cm,BC=15cm.現(xiàn)有動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿AC向點(diǎn)C方向運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿線段CB也向點(diǎn)B方向運(yùn)動(dòng).如果點(diǎn)P的速度是4cm/秒,點(diǎn)Q的速度是2cm/秒,它們同時(shí)出發(fā),當(dāng)有一點(diǎn)到達(dá)所在線段的端點(diǎn)時(shí),就停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.求:

1)用含t的代數(shù)式表示Rt△CPQ的面積S;

2)當(dāng)t=3秒時(shí),P、Q兩點(diǎn)之間的距離是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中有四邊形ABCD.

1)寫出四邊形ABCD的頂點(diǎn)坐標(biāo);

2)求線段AB的長(zhǎng);

3)求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案