精英家教網 > 初中數學 > 題目詳情
如圖,A、B、C、D為矩形的4個頂點,AB=16cm,BC=6cm,動點P、Q分別以3cm/s、2cm/s的速度從點A、C同時出發(fā),點Q從點C向點D移動.
(1)若點P從點A移動到點B停止,點P、Q分別從點A、C同時出發(fā),問經過2s時P、Q兩點之間的距離是多少cm?
(2)若點P從點A移動到點B停止,點Q隨點P的停止而停止移動,點P、Q分別從點A、C同時出發(fā),問經過多長時間P、Q兩點之間的距離是10cm?
(3)若點P沿著AB→BC→CD移動,點P、Q分別從點A、C同時出發(fā),點Q從點C移動到點D停止時,點P隨點Q的停止而停止移動,試探求經過多長時間△PBQ的面積為 12cm2?
【答案】分析:(1)作PE⊥CD于E,表示出PQ的長度,利用PE2+EQ2=PQ2列出方程求解即可;
(2)設x秒后,點P和點Q的距離是10cm.在Rt△PEQ中,根據勾股定理列出關于x的方程(16-5x)2=64,通過解方程即可求得x的值;
(3)分類討論:①當點P在AB上時;②當點P在BC邊上;③當點P在CD邊上時.
解答:解:(1)過點P作PE⊥CD于E.則根據題意,得
EQ=16-2×3-2×2=6(cm),PE=AD=6cm;
在Rt△PEQ中,根據勾股定理,得
PE2+EQ2=PQ2,即36+36=PQ2
∴PQ=6cm;
∴經過2s時P、Q兩點之間的距離是6cm;

(2)設x秒后,點P和點Q的距離是10cm.
(16-2x-3x)2+62=102,即(16-5x)2=64,
∴16-5x=±8,
,;
∴經過s或sP、Q兩點之間的距離是10cm;

(3)連接BQ.設經過ys后△PBQ的面積為12cm2
①當時,則PB=16-3y,
PB•BC=12,即×(16-3y)×6=12,
解得y=4;
②當時,
BP=3y-AB=3y-16,QC=2y,則
BP•CQ=(3y-16)×2y=12,
解得y1=6,(舍去);   
時,
QP=CQ-PQ=22-y,則
QP•CB=(22-y)×6=12,
解得y=18(舍去).
綜上所述,經過4秒或6秒△PBQ的面積為 12cm2
點評:本題綜合考查了矩形的性質、兩點間的距離、三角形的面積等知識點.解答(3)時,要分類討論,以防漏解.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

14、如圖,已知⊙P的半徑OD=5,OD⊥AB,垂足是G,OG=3,則弦AB=
8

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知A,B兩點是反比例函數y=
4x
(x>0)的圖象上任意兩點,過A,B兩點分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在矩形ABCD中,AB=24,BC=26.先順次連接矩形各邊中點得菱形,又順次連接菱形各邊中點得矩形,再順次連接矩形各邊中點得菱形,照此繼續(xù),…,第10次連接的圖形的面積是
 

精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

6、如圖是某幾何體的三視圖,則這個幾何體是(  )

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖AB是⊙O的直徑,⊙O過BC的中點D,且DE⊥AC于點E.
(1)求證:DE是⊙O的切線;
(2)若∠C=30°,CD=
3
,求⊙O的半徑.

查看答案和解析>>

同步練習冊答案