精英家教網(wǎng)如圖,已知A,B兩點(diǎn)是反比例函數(shù)y=
4x
(x>0)的圖象上任意兩點(diǎn),過(guò)A,B兩點(diǎn)分別作y軸的垂線,垂足分別為C,D,連接AB,AO,BO,梯形ABDC的面積為5,則△AOB的面積為
 
分析:根據(jù)反比例函數(shù)y=
k
x
中k的幾何意義可知.
解答:精英家教網(wǎng)解:過(guò)點(diǎn)B向x軸作垂線,垂足是G,
則矩形BDOG的面積是4,
所以△AOB的面積=S矩形BDOG+S梯形ABDC-S△ACO-S△BOG=4+5-2-2=5.
點(diǎn)評(píng):主要考查了反比例函數(shù)y=
k
x
中k的幾何意義,即過(guò)雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)?疾榈囊粋(gè)知識(shí)點(diǎn);這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點(diǎn)與原點(diǎn)所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系即S=
1
2
|k|.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知A、C兩點(diǎn)在雙曲線y=
1x
上,點(diǎn)C的橫坐標(biāo)比點(diǎn)A的橫坐標(biāo)多2,AB⊥x軸,CD⊥x軸,CE⊥AB,垂足分別是B、D、E.
(1)當(dāng)A的橫坐標(biāo)是1時(shí),求△AEC的面積S1
(2)當(dāng)A的橫坐標(biāo)是n時(shí),求△AEC的面積Sn;
(3)當(dāng)A的橫坐標(biāo)分別是1,2,…,10時(shí),△AEC的面積相應(yīng)的是S1,S2,…,S10,求S1+S2+…+S10的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•福田區(qū)二模)如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(-2,0)、(0,1),⊙C的圓心坐標(biāo)為(0,-1),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),射線AD與y軸交于點(diǎn)E,則△ABE面積的最大值是
11
3
11
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知A、B兩點(diǎn)的坐標(biāo)分別為(2
3
,0)、(0,2),P是△AOB外接圓上的一點(diǎn),且∠AOP=45°,則點(diǎn)P的坐標(biāo)為
3
+1,
3
+1)或(
3
-1,1-
3
3
+1,
3
+1)或(
3
-1,1-
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知M、N兩點(diǎn)在正方形ABCD的對(duì)角線BD上移動(dòng),∠MCN為定角,連接AM、AN,并延長(zhǎng)分別交BC、CD于E、F兩點(diǎn),則∠CME與∠CNF在M、N兩點(diǎn)移動(dòng)過(guò)程,它們的和是否有變化?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知E、F兩點(diǎn)在線段BC上,AB=AC,BF=CE,你能判斷線段AF和AE的大小關(guān)系嗎?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案