如圖,E為正方形ABCD的對角線BD上一點,且BE=BC,點F在CD上,且EF⊥BD.
求證:DE=CF.
分析:利用“HL”證明Rt△BEF和Rt△BCF全等,根據(jù)全等三角形對應(yīng)邊相等可得EF=CF,再根據(jù)正方形的對角線平分一組對角求出∠BDF=45°,然后求出∠DFE=45°,從而得到∠BDF=∠DFE,根據(jù)等角對等邊的性質(zhì)可得DE=EF,從而得證.
解答:證明:在正方形ABCD中,∠C=90°,
∵EF⊥BD,
∴∠BEF=90°,
∴∠C=∠BEF=90°,
在Rt△BEF和Rt△BCF中,
BF=BF
BE=BC
,
∴Rt△BEF≌Rt△BCF(HL),
∴EF=CF,
∵BD為正方形ABCD的對角線,
∴∠BDF=45°,
∴∠DFE=90°-45°=45°,
∴∠BDF=∠DFE,
∴DE=EF,
∴DE=CF.
點評:本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),等角對等邊的性質(zhì),證明得到Rt△BEF和Rt△BCF全等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,E為正方形ABCD的邊AB上一點(不含A、B點),F(xiàn)為BC邊的延長線上一點,△DAE旋轉(zhuǎn)后能與△DCF重合.
(1)旋轉(zhuǎn)中心是哪一點?
(2)旋轉(zhuǎn)了多少度?
(3)如果連接EF,那么△DEF是怎樣的三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P為正方形ABCD的對稱中心,A(0,3),B(1,0),直線OP交AB于N,DC于M,點H從原點O出發(fā)沿x軸的正半軸方向以1個單位每秒速度運動,同時,點R從O出發(fā)沿精英家教網(wǎng)OM方向以
2
個單位每秒速度運動,運動時間為t.求:
(1)C的坐標(biāo)為
 
;
(2)當(dāng)t為何值時,△ANO與△DMR相似?
(3)△HCR面積S與t的函數(shù)關(guān)系式;并求以A、B、C、R為頂點的四邊形是梯形時t的值及S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,G為正方形ABCD的對稱中心,A(0,2),B(1,0),直線OG交AB于E,DC于F,點Q從A出發(fā)沿A→B→C的方向以
5
個單位每秒速度運動,同時,點P從O出發(fā)沿OF方精英家教網(wǎng)向以
2
個單位每秒速度運動,Q點到達(dá)終點,點P停止運動,運動時間為t.求:
(1)求G點的坐標(biāo).
(2)當(dāng)t為何值時,△AEO與△DFP相似?
(3)求△QCP面積S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,P為正方形ABCD的對稱中心,正方形ABCD的邊長為
10
,tan∠ABO=3,直線OP交AB于N,DC于M,點H從原點O出發(fā)沿x軸的正半軸方向以1個單位每秒速度運動,同時,點R從O出發(fā)沿OM方向以
2
個單位每秒速度運動,運動時間為t,求:
(1)直接寫出A、D、P的坐標(biāo);
(2)求△HCR面積S與t的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時,△ANO與△DMR相似?
(4)求以A、B、C、R為頂點的四邊形是梯形時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2009•梅州一模)如圖,O為正方形ABCD對角線AC上一點,以O(shè)為圓心,OA長為半徑的⊙0與BC相切于點M,與AB、AD分別相交于點E、F.
(1)求證:CD與⊙0相切;
(2)若⊙0的半徑為
2
,求正方形ABCD的邊長.

查看答案和解析>>

同步練習(xí)冊答案