小華的爺爺每天堅持體育鍛煉,某天他慢步到離家較遠的綠島公園,打了一會兒太極拳后跑步回家。下面能反映當(dāng)天小華的爺爺離家的距離y與時間x的函數(shù)關(guān)系的大致圖像是【   】

                                                        

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


下列圖形中,既是軸對稱圖形又是中心對稱圖形的是(     )

    A.角     B.等邊三角形    C.平行四邊形        D.矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,在平面直角坐標(biāo)系中,邊長不等的正方形依次排列,每個正方形都有一個頂點落在函數(shù)y=x的圖象上,從左向右第3個正方形中的一個頂點A的坐標(biāo)為(8,4),陰影三角形部分的面積從左向右依次記為S1、S2、S3、…、Sn,則S10的值為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


【問題情境】張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣一個問題:如圖1,在△ABC中,AB=AC,點P為邊BC上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CF⊥AB,垂足為F.求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF. 小俊的證明思路是:如圖2,過點P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.

(1) 從小軍和小俊的思路中任選一種方法,證明PD+PE=CF。
【變式探究】

(2) 如圖3,當(dāng)點P在BC延長線上時,其余條件不變,求證:PD﹣PE=CF;

【結(jié)論運用】請運用上述解答中所積累的經(jīng)驗和方法完成下列題目:

(3) 如圖4,將矩形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=16,CF=6,求PG+PH的值;



查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,矩形紙片ABCD中,AD=3cm,點EBC上,將紙片沿AE折疊,使點B落在AC上的點F處,且∠AEF=∠CEF,則AB的長是(  )

A1 cm      Bcm      C2 cm     D cm

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


直線與直線在同一平面直角坐標(biāo)系中的圖象如圖所示,則關(guān)于的不等式的解集為        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,正方形ABCD的面積為16,△ABE是等邊三角形,點E在正方形ABCD內(nèi),在對角線AC上有一點P,使PDPE的和最小,則這個最小值為(    )

A.               B.3            C.4          D.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,∠C、∠l、∠2之間的大小關(guān)系是____________

查看答案和解析>>

同步練習(xí)冊答案