【題目】如圖,以AB為直徑的⊙O交∠BAD的角平分線于C,過CCDADD,交AB的延長線于E
1)求證:CD為⊙O的切線.
2)若,求cosDAB

【答案】1)見解析;(2

【解析】

1)連接OC,推出∠DAC=CAB,∠OAC=OCA,求出∠DAC=OCA,得出OCAD,推出OCDC,根據(jù)切線的判定判斷即可;
2)連接BC,可證明△ACD∽△ABC,得出比例式,求出BC,求出圓的直徑AB,再根據(jù)勾股定理得出CE,即可求出答案.

1)證明:連接OC
AC平分∠DAB,
∴∠DAC=CAB
OC=OA,
∴∠OAC=OCA
∴∠DAC=OCA,
OCAD,
ADCD,
OCCD
OC為⊙O半徑,
CD是⊙O的切線;

2)連接BC,
AB為直徑,
∴∠ACB=90°,
AC平分∠BAD,
∴∠CAD=CAB,
,
∴令CD=3AD=4,得AC=5

,
由勾股定理得AB= ,

,
解得AE= ,
cosDAB=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知函數(shù),其中為常數(shù).

1)當(dāng)時(shí),求函數(shù)圖像的頂點(diǎn)坐標(biāo)(用含的代數(shù)式表示);

2)當(dāng)y最大值為1時(shí),且,求整數(shù)的值;

3)當(dāng)直線與函數(shù)的圖像只有一個(gè)公共點(diǎn)時(shí),求的取值范圍;

4)設(shè)點(diǎn)軸上,點(diǎn)軸上的正半軸上,已知點(diǎn),以為邊做正方形,當(dāng)函數(shù)的圖像與正方形的邊有兩個(gè)公共點(diǎn)時(shí),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知二次函數(shù)圖象經(jīng)過點(diǎn),其對稱軸為直線

(1)求該二次函數(shù)的解析式;

(2)若直線的面積分成相等的兩部分,求的值;

(3)點(diǎn)是該二次函數(shù)圖象與軸的另一個(gè)交點(diǎn),點(diǎn)是直線上位于軸下方的動(dòng)點(diǎn),點(diǎn)是第四象限內(nèi)該二次函數(shù)圖象上的動(dòng)點(diǎn),且位于直線右側(cè).若以點(diǎn)為直角頂點(diǎn)的相似,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,ECD邊上的點(diǎn),過點(diǎn)EEFBDF

(1)尺規(guī)作圖:在圖中求作點(diǎn)E,使得EF=EC;(保留作圖痕跡,不寫作法)

(2)(1)的條件下,連接FC,求∠BCF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形鐵皮AOB中,OA=30,∠AOB=36°,OB在直線l上.將此扇形沿l按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)過程中無滑動(dòng)),當(dāng)OA第一次落在l上時(shí),停止旋轉(zhuǎn).則點(diǎn)O所經(jīng)過的路線長為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB4,MAB的中點(diǎn),動(dòng)點(diǎn)P到點(diǎn)M的距離是1,連接PB,線段PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PC,連接AC,則線段AC長度的最大值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,按以下步驟作圖:

①分別以點(diǎn)AB為圓心,以大于AB的長為半徑作弧,兩弧相交于點(diǎn)EF;

②作直線EFBC于點(diǎn)G,連接AG;若AGBC,CG3,則AD的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生居家學(xué)習(xí)期間對函數(shù)知識的掌握情況,某學(xué)校數(shù)學(xué)教師對九年級全體學(xué)生進(jìn)行了一次摸底測試,測試含一次函數(shù)、二次函數(shù)和反比例函數(shù)三項(xiàng)內(nèi)容,每項(xiàng)滿分10分.現(xiàn)隨機(jī)抽取20名學(xué)生的成績(成績均為整數(shù))進(jìn)行收集、整理、描述和分析,下面給出了部分信息:

a.該20名學(xué)生一次函數(shù)測試成績?nèi)缦拢?/span>7 9 10 9 7 6 8 10 10 8 6 10 10 9 10 9 9 9 10 10

b.該20名學(xué)生總成績和二次函數(shù)測試成績情況統(tǒng)計(jì)圖:

c.該20名學(xué)生總成績平均分為25分,一次函數(shù)測試平均分為8.8分.

根據(jù)以上信息,回答下列問題:

1)該20名學(xué)生一次函數(shù)測試成績的中位數(shù)是   ,眾數(shù)是   

2)若該校九年級共有400名學(xué)生,且總成績不低于26分的學(xué)生成績記為優(yōu)秀,估計(jì)該校九年級本次測試總成績優(yōu)秀的約有   人.

3)在總成績和二次函數(shù)測試成績情況統(tǒng)計(jì)圖中,A同學(xué)的一次函數(shù)測試成績是   分;若B同學(xué)的反比例函數(shù)測試成績是8分,則B同學(xué)的一次函數(shù)測試成績是   分.

4)一次函數(shù)、二次函數(shù)和反比例函數(shù)三項(xiàng)內(nèi)容中,學(xué)生掌握情況最不好的是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線為常數(shù),)與直線都經(jīng)過兩點(diǎn),是該拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)軸的垂線交直線于點(diǎn),交x軸于點(diǎn)H

(1)求此拋物線和直線的解析式;

(2)當(dāng)點(diǎn)在直線下方時(shí),求取得最大值時(shí)點(diǎn)的坐標(biāo);

(3)設(shè)該拋物線的頂點(diǎn)為直線與該拋物線的對稱軸交于點(diǎn).當(dāng)以點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案