如圖,拋物線y=x2+bx+c與x軸交于點A、B(點A在點B左側(cè)),與y軸交于點C(0,-3),且拋物線的對稱軸是直線x=1.

(1)求b的值;

(2)點E是y軸上一動點,CE的垂直平分線交y軸于點F,交拋物線于P、Q兩點,且點P在第三象限.當線段PQ = AB時,求點E的坐標;

(3)若點M在射線CA上運動,過點M作MN⊥y軸,垂足為N,以M為圓心,MN為半徑作⊙M,當⊙M與x軸相切時,求⊙M的半徑.

 

【答案】

(1)b="-2" (2)點E的坐標為(0,- ) (3)

【解析】

試題分析:解:(1)由圖可知,對稱軸x=1

X===1

即b=-1

(2)∵拋物線的對稱軸為直線x=1

∴設拋物線的解析式為y=(x-1)2+k

∵拋物線過點C(0,-3),

∴ (0-1)2+k=-3

解得k=-4

拋物線的解析式為y=(x-1)2-4=x2-2x-3

令y=0,則x2-2x-3=0

解得x1 = 3,x2 = -1

點A坐標為(-1,0),點B坐標為(3,0)

∴AB=4,又PQ = AB

∴PQ ="3"

∵PQ⊥y軸

∴PQ∥x軸

設直線PQ交直線x=1于點G

由拋物線的軸對稱性可得,PG=

∴點P的橫坐標為 -  

將點P的橫坐標代入y=x2-2x-3中,得y =" -"

∴點P坐標為(- ,-

∴點F坐標為(0,-

∴FC=" -"  -( -3)=  

∵PQ垂直平分CE

∴CE="2" FC=

∴點E的坐標為(0,-

(3)設直線l A C:y="k" x+ b(k≠0)

過點A(-1,0),C(0,-3)

∴y=-3x+3

∴M(xM,-3xM+3)

又∵⊙M與x軸相切,MN⊥y軸

∴x M=-3xM+3

∴x M=

∴⊙M的半徑為

考點:一次函數(shù)與二次函數(shù)的綜合運用

點評:此類題可以利用拋物線的對稱性可求出拋物線的解析式,函數(shù)值,兩點間的距離,點的坐標,利用對稱點的坐標也可以求出其對稱軸,要認真體會,靈活應用。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源:江蘇中考真題 題型:解答題

如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,與y軸交于點C,點O為坐標原點,點D為拋物線的頂點,點E在拋物線上,點F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3.
(1)求拋物線所對應的函數(shù)解析式;
(2)求△ABD的面積;
(3)將△AOC繞點C逆時針旋轉(zhuǎn)90°,點A對應點為點G,問點G是否在該拋物線上?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源:2013年浙江省金華市六校聯(lián)誼中考模擬數(shù)學試卷(帶解析) 題型:填空題

如圖,拋物線y=x2x與x軸交于O,A兩點. 半徑為1的動圓(⊙P),圓心從O點出發(fā)沿拋物線向靠近點A的方向移動;半徑為2的動圓(⊙Q),圓心從A點出發(fā)沿拋物線向靠近點O的方向移動. 兩圓同時出發(fā),且移動速度相等,當運動到P,Q兩點重合時同時停止運動. 設點P的橫坐標為t .

(1)點Q的橫坐標是         (用含t的代數(shù)式表示);
(2)若⊙P與⊙Q 相離,則t的取值范圍是          .

查看答案和解析>>

科目:初中數(shù)學 來源:2013年浙江省金華市六校聯(lián)誼中考模擬數(shù)學試卷(解析版) 題型:填空題

如圖,拋物線y=x2x與x軸交于O,A兩點. 半徑為1的動圓(⊙P),圓心從O點出發(fā)沿拋物線向靠近點A的方向移動;半徑為2的動圓(⊙Q),圓心從A點出發(fā)沿拋物線向靠近點O的方向移動. 兩圓同時出發(fā),且移動速度相等,當運動到P,Q兩點重合時同時停止運動. 設點P的橫坐標為t .

(1)點Q的橫坐標是         (用含t的代數(shù)式表示);

(2)若⊙P與⊙Q 相離,則t的取值范圍是          .

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆江蘇省蘇州工業(yè)園區(qū)九年級上學期期中測試數(shù)學卷 題型:選擇題

如圖,拋物線y=x2+1與雙曲線y=的交點A的橫坐標是1,則關于x的不等式+x2+1 < 0的解集是( ▲ )

A.x>1            B.x<−1            C.0<x<1          D.−1<x<0

 

查看答案和解析>>

同步練習冊答案