【題目】如圖,某市有一塊長為米,寬為米的長方形地塊,規(guī)劃部門計劃將陰影部分進行綠化,中間將修建一座雕像,左右兩邊修兩條寬為米的道路.().

1試用含的代數(shù)式表示綠化的面積是多少平方米?

假設陰影部分可以拼成一個矩形.請你求出所拼矩形相鄰兩邊的長:如果要使所拼矩形面積最大,求滿足的關系式;

2)若,請求出綠化面積.

【答案】1綠化面積當矩形面積最大時;(2)綠化面積為45平方米.

【解析】

1)①根據(jù)綠化面積等于總面積減去中間空白圖形的面積列出代數(shù)式化簡即可;

②綠化面積因式分解后,討論兩條鄰邊相等即可求得滿足的關系式;

2)代入a、b的值后即可求得綠化面積.

解:(1綠化面積

;

由題意可知:矩形面積

矩形相鄰兩邊的長為

當矩形面積最大時,

;

,

此時,,

,

不符合,故舍去,

綜上,當矩形面積最大時,;

2)當時,

綠化面積

答:綠化面積為45平方米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】張老師將“校園詩詞大賽”所有參賽選手的比賽成績(得分均為整數(shù))進行整理,并分別繪制成扇形統(tǒng)計圖和頻數(shù)直方圖,部分信息如下:

1)本次比賽選手共有_ 人,扇形統(tǒng)計圖中“”這一組人數(shù)占總參賽人數(shù)的百分比為_ ,頻數(shù)直方圖中“”這一組的人數(shù)為__

2)賽前規(guī)定,成績由高到低前的參賽選手獲獎某參賽選手的比賽成績?yōu)?/span>分,試判斷他能否獲獎,并說明理由;

3)成績前四名是名男生和名女生,若從他們中任選人作為全區(qū)“詩詞大會”重點培訓對象,試求恰好選中女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,ECD邊上一點(CE>DE),AE,BD交于點F

1)如圖1,過點FGHAE,分別交邊ADBC于點G,H

求證:∠EAB=GHC

2AE的垂直平分線分別與AD,AE,BD交于點PM,N,連接CN

①依題意補全圖形;

1 備用圖

②用等式表示線段AECN之間的數(shù)量關系,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是一個地鐵站入口的雙翼閘機.如圖2,它的雙翼展開時,雙翼邊緣的端點AB之間的距離為10cm,雙翼的邊緣ACBD54cm,且與閘機側立面夾角∠PCA=∠BDQ30°.當雙翼收起時,可以通過閘機的物體的最大寬度為(  )

A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,,半徑為2從點開始(如圖①)沿直線向右滾動,滾動時始終與直線相切(切點為),當只有一個公共點時滾動停止.作于點

1)圖①中,邊上截得的弦長______;

2)當圓心落在上時,如圖②,判斷的位置關系,請說明理由;

3)在滾動過程中,線段的長度隨之變化,設,,求出之間的函數(shù)關系式,并直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的對角線AC,BD相交于點O.E,F(xiàn)AC上的兩點,并且AE=CF,連接DE,BF.

(1)求證:DOE≌△BOF;

(2)若BD=EF,連接DE,BF.判斷四邊形EBFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組正方形按如圖所示的方式放置,其中頂點B1y軸上,頂點C1,E1,E2C2,E3E4,C3……x軸上,已知正方形A1B1C1D1的邊長為1,B1C1O60°B1C1B2C2B3C3……,則正方形A2020B2020C2020D2020的邊長是(

A.()2017B.()2018C.()2019D.()2020

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為6,點EAC邊上一點,AE=2,作DEAC于點EAB于點D,點FBC邊上且BF=BD.連接EFCD交于點H,則DH的長為(

A.B. C. D.

查看答案和解析>>

同步練習冊答案