【題目】在平面直角坐標系中,對于兩個點,和圖形,如果在圖形上存在點,(,可以重合),使得,那么稱點與點是圖形的一對“倍點”.已知⊙O的半徑為,點.
(1)①點到⊙O的最大值是_______,最小值是_______;
②在,,這兩個點中,與點是⊙O的一對“倍點”的是_______;
(2)在直線上存在點與點是⊙O的一對“倍點”,求的取值范圍;
(3)已知直線,與軸、軸分別交于點的,,若線段(含端點,)上所有點與點都是⊙O的一對“倍點”,直接寫出的取值范圍.
【答案】(1)①,,②;(2);(3)或
【解析】
(1)①根據(jù)點與圓的位置關系求解即可;
②先求出A、D兩個點到⊙O的最大值與最小值,再根據(jù)“倍點”的定義求解即可;
(2)根據(jù)點B到⊙O的距離最值可得,點O到直線的最大距離OD=9,由和可推出即可求出答案;
(3)由線段MN到⊙O最大距離為ON,根據(jù)可得,即可得出b的取值范圍.
解:(1)①點B到⊙O的最大值是
點B到⊙O的最小值是,
故答案為:4,2;
②A到⊙O的最大值6,最小值4;D到⊙O的最大值11,最小值9,
由(1)知,點B到⊙O的最大值是4,最小值是2,
因此,在⊙O上存在點P,Q,使得,則A與B是⊙O的一對“倍點”
故答案為:A;
(2)∵點到⊙O的最大值是,最小值是
,
∵O到直線的最大距離是,即,
∵,
,
;
(3)∵直線的 ,∴,
∵點到⊙O的最大值是,最小值是
,
∴,
∴或.
科目:初中數(shù)學 來源: 題型:
【題目】下表中給出,,三種手機通話的收費方式.
收費方式 | 月通話費/元 | 包時通話時間/ | 超時費/(元/) |
不限時 |
(1)設月通話時間為小時,則方案,,的收費金額,,都是的函數(shù),請分別求出這三個函數(shù)解析式.
(2)填空:
若選擇方式最省錢,則月通話時間的取值范圍為______;
若選擇方式最省錢,則月通話時間的取值范圍為______;
若選擇方式最省錢,則月通話時間的取值范圍為______;
(3)小王、小張今年月份通話費均為元,但小王比小張通話時間長,求小王該月的通話時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由邊長為1的小正方形構成的網(wǎng)格,每個小正方形的頂點叫做格點.的頂點在格點上,僅用無刻度尺的直尺在給定網(wǎng)格中畫圖,畫圖過程用虛線表示,畫圖結(jié)果用實線表示,按步驟完成下列問題:
(1)將邊繞點順時針旋轉(zhuǎn)90°得到線段;
(2)畫邊的中點;
(3)連接并延長交于點,直接寫出的值;
(4)在上畫點,連接,使.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】松立商店準備從永波機械廠購進甲、乙兩種零件進行銷售,若甲種零件的進價是乙種零件進價的,用1600元單獨購進一種零件時,購進甲種零件的數(shù)量比乙種零件多4件.
(1)求每個甲種零件,每個乙種零件的進價分別為多少元?
(2)松立商店購進甲、乙兩種零件共102個,準備將零件批發(fā)給零售商.甲種零件的批發(fā)價是100元,乙種零件的批發(fā)價是130元,松立商店計劃從零售商處的獲利超過2284元,通過計算求出松立商店最多給零售商批發(fā)多少個甲種零件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某初中學生為了解該校學生喜歡球類活動的情況,隨機抽取了若干名學生進行問卷調(diào)查(要求每位學生只能填寫一種自己喜歡的球類),并將調(diào)査的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖.
請根據(jù)圖中提供的信息,解答下面的問題
(1)參加調(diào)査的學生共有 人,在扇形圖中,表示“其他球類”的扇形圓心角為 度;
(2)將條形圖補充完整;
(3)若該校有2300名學生,則估計喜歡“足球”的學生共有 人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,AD=6,點O是對角線BD的中點,過點O的直線分別交AB,CD邊于點E,F.
(1)求證:四邊形DEBF是平行四邊形;
(2)當DE=DF時,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,,BC為的直徑,D為任意一點,連接AD交BC于點F,EA⊥AD交DB的延長線于E,連接CD.
(1)求證:△ABE≌△ACD;
(2)填空:①當∠CAD的度數(shù)為 時,四邊形ABDC是正方形;
②若四邊形ABDC的面積為4,則AD的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了調(diào)查學生對衛(wèi)生健康知識,特別是疫情防控下的衛(wèi)生常識的了解,現(xiàn)從九年級名學生中隨機抽取了部分學生參加測試,并根據(jù)測試成績繪制了如下頻數(shù)分布表和扇形統(tǒng)計圖(尚不完整).
組別 | 成績/分 | 人數(shù) |
第組 | ||
第組 | ||
第組 | ||
第組 | ||
第組 |
請結(jié)合圖表信息完成下列各題.
(1)表中a的值為_____,b的值為______;在扇形統(tǒng)計圖中,第組所在扇形的圓心角度數(shù)為______°;
(2)若測試成績不低于分為優(yōu)秀,請你估計從該校九年級學生中隨機抽查一個學生,成績?yōu)閮?yōu)秀的概率.
(3)若測試成績在分以上(含分)均為合格,其他為不合格,請你估計該校九年級學生中成績不合格的有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點O為坐標原點,直線與x,y軸分別交于點A,B兩點,直線y=2x+3m與軸分別交于兩點,兩直線交于點E,點P在射線CA上,點Q在射線AE上,分別連接交于點F,且.
(1)若點E的橫坐標為,求的值
(2)當時,過點P作于點M,過點E作于點N,求證:
(3)在(1)的條件下,當時,過點P作交AB于點G,點K在射線CQ上,射線EK交直線于點L,射線交直線于點R,連接,當時,求K點LR到的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com