【題目】拋物線的頂點(diǎn)為,與x軸的一個(gè)交點(diǎn)A在點(diǎn)和之間,其部分圖象如圖,其中錯(cuò)誤的結(jié)論為
A. 方程的根為 B.
C. D.
【答案】A
【解析】試題解析:∵x=-1時(shí),y≠0,
∴方程ax2+bx+c=0的根為-1這種說(shuō)法不正確,
∴結(jié)論A不正確;
∵二次函數(shù)y=ax2+bc+c的圖象與x軸有兩個(gè)交點(diǎn),
∴△>0,
即b2-4ac>0,
∴結(jié)論B正確;
∵x=-,
∴b=2a,
∴頂點(diǎn)的縱坐標(biāo)是=2,
∴a=c-2,
∴結(jié)論C正確;
∵二次函數(shù)y=ax2+bc+c的圖象的對(duì)稱軸是x=-1,與x軸的一個(gè)交點(diǎn)A在點(diǎn)(-3,0)和(-2,0)之間,
∴與x軸的另一個(gè)交點(diǎn)A在點(diǎn)(0,0)和(1,0)之間,
∴x=1時(shí),y<0,
∴a+b+c<0,
∴結(jié)論D正確;
∴不正確的結(jié)論為:A.
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,E、F、G、H分別是AB、BD、CD、AC的中點(diǎn).
(1)求證:四邊形EFGH是平行四邊形;
(2)當(dāng)AD⊥BC時(shí),四邊形EFGH是哪種特殊的平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC和△A'B'C'的頂點(diǎn)都在格點(diǎn)上.
(1)將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后得到△A1BC1;
(2)若△A'B'C'是由△ABC繞某一點(diǎn)旋轉(zhuǎn)某一角度得到,則旋轉(zhuǎn)中心的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,甲、乙、丙、丁、戊五名同學(xué)有以下說(shuō)法:甲說(shuō):“直線BC不過(guò)點(diǎn)A”;乙說(shuō):“點(diǎn)A在直線CD外”; 丙說(shuō):“D在線段CB的反向延長(zhǎng)線上;”丁說(shuō):“A,B,C,D兩兩連結(jié),有5條線段” ; 戊說(shuō):“射線AD與射線CD不相交”. 其中說(shuō)明正確的有( ).
A. 3人B. 4人C. 5人D. 2人
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)完《有理數(shù)》后,小奇對(duì)運(yùn)算產(chǎn)生了濃厚的興趣.借助有理數(shù)的運(yùn)算,定義了一種新運(yùn)算“⊕”,規(guī)則如下:a⊕b=a×b+2×a.
(1)求2⊕(﹣1)的值;
(2)求﹣3⊕(﹣4⊕)的值;
(3)試用學(xué)習(xí)有理數(shù)的經(jīng)驗(yàn)和方法來(lái)探究這種新運(yùn)算“⊕”是否具有交換律?請(qǐng)寫出你的探究過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3),B(2,5),C(4,2)(每個(gè)方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度)
(1)將△ABC平移,使點(diǎn)A移動(dòng)到點(diǎn)A1,請(qǐng)畫出△A1B1C1;
(2)作出△ABC關(guān)于O點(diǎn)成中心對(duì)稱的△A2B2C2,并直接寫出A2,B2,C2的坐標(biāo);
(3)△A1B1C1與△A2B2C2是否成中心對(duì)稱?若是,請(qǐng)寫出對(duì)稱中心的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A是拋物線與x軸正半軸的交點(diǎn),點(diǎn)B在拋物線上,其橫坐標(biāo)為2,直線AB與y軸交于點(diǎn)點(diǎn)M、P在線段AC上不含端點(diǎn),點(diǎn)Q在拋物線上,且MQ平行于x軸,PQ平行于y軸設(shè)點(diǎn)P橫坐標(biāo)為m.
(1)求直線AB所對(duì)應(yīng)的函數(shù)表達(dá)式.
(2)用含m的代數(shù)式表示線段PQ的長(zhǎng).
(3)以PQ、QM為鄰邊作矩形PQMN,求矩形PQMN的周長(zhǎng)為9時(shí)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為-10,B點(diǎn)對(duì)應(yīng)的數(shù)為90.
(1)請(qǐng)寫出與A,B兩點(diǎn)距離相等的M點(diǎn)對(duì)應(yīng)的數(shù);
(2)現(xiàn)在有一只電子螞蟻P從B點(diǎn)出發(fā)時(shí),以3個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,求C點(diǎn)對(duì)應(yīng)的數(shù)是多少.
(3)若當(dāng)電子螞蟻P從B點(diǎn)出發(fā)時(shí),以3個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)的時(shí)間兩只電子螞蟻在數(shù)軸上相距35個(gè)單位長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:(1)﹣7﹣1;
(2)(﹣3)+(﹣5)﹣(+11)﹣(﹣17);
(3)﹣3+8﹣7;
(4)()×(﹣24);
(5)()×(﹣12);
(6)(﹣0.1)﹣(﹣8)+(﹣11)﹣(﹣);
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com