如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中,一段圓弧經(jīng)過(guò)網(wǎng)格的交點(diǎn)A、B、C.以點(diǎn)O為原點(diǎn)、豎直和水平方向所在的直線(xiàn)為坐標(biāo)軸、網(wǎng)格邊長(zhǎng)為單位長(zhǎng),建立平面直角坐標(biāo)系.設(shè)該圓弧所在圓的圓心為點(diǎn)D,連結(jié)AD、CD.
請(qǐng)完成下列問(wèn)題:

(1)出點(diǎn)D的坐標(biāo):D___________;
(2)D的半徑=_____(結(jié)果保留根號(hào));
(3)若扇形DAC是一個(gè)圓錐的側(cè)面展開(kāi)圖,則該圓錐的底面面積為_(kāi)_________(結(jié)果保留π);
(4)若E(7,0),試判斷直線(xiàn)EC與⊙D的位置關(guān)系并說(shuō)明你的理由.
(1)D(2,0)
(2)
(3)
(4)相切

試題分析:(1) D(2,0)
(2).
(3).設(shè)圓錐的底面半徑為r,則,
∴r=,
∴圓錐的底面面積為
(4)相切.
理由:∵CD=,CE=,DE=5
∴CD2+CE2=25=DE2
∴∠DCE=90°即CE⊥CD
∴CE與⊙D相切。
點(diǎn)評(píng):此類(lèi)試題屬于難度較大的一類(lèi)試題,考生在解答此類(lèi)試題時(shí)一定要注意分析圓錐的底面半徑和圓的基本位置關(guān)系等基礎(chǔ)知識(shí)的把握
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:OA、OB是⊙O的半徑,且OA⊥OB,P是射線(xiàn)OA上一點(diǎn)(點(diǎn)A除外),直線(xiàn)BP交⊙O于點(diǎn)Q,過(guò)Q作⊙O的切線(xiàn)交直線(xiàn)OA與點(diǎn)E。

(1)如圖①,若點(diǎn)P在線(xiàn)段OA上,求證:∠OBP+∠AQE=45°;(本題4分)
(2)探究:若點(diǎn)P在線(xiàn)段OA的延長(zhǎng)線(xiàn)上,其它條件不變,∠OBP與∠AQE之間是否存在某種確定的等量關(guān)系?請(qǐng)你完成圖②,并寫(xiě)出結(jié)論(不需要證明)。(本題3分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知⊙O的半徑為5,A為線(xiàn)段OP的中點(diǎn),當(dāng)OP=6時(shí),點(diǎn)A與⊙O的位置關(guān)系是(      )
A.點(diǎn)A在⊙O內(nèi)B.點(diǎn)A在⊙O上C.點(diǎn)A在⊙O外D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)三角形ABC為一等腰直角三角形,角ABC為直角,D為AC中點(diǎn)。以B為圓心,AB為半徑作一圓弧AFC,以D為中心,AD為半徑,作一半圓AGC,作正方形BDCE。月牙形AGCFA的面積與正方形BDCE的面積大小關(guān)系(   )
A.S月牙=S正方形B.S月牙=S正方形 
C.S月牙=S正方形 D.S月牙=2S正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,PA、PB分別與⊙O相切于點(diǎn)A、B,⊙O的切線(xiàn)EF分別交PA、PB于點(diǎn)E、F,切點(diǎn)C在弧AB上,若PA長(zhǎng)為2,則△PEF的周長(zhǎng)是_           _

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖⊙O過(guò)點(diǎn)B、C,圓心O在等腰Rt△ABC的內(nèi)部,∠BAC=90°,OA=1,BC=6則⊙O的半徑為(   )

A.6
B.13
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

圓錐形冰淇淋盒的母線(xiàn)長(zhǎng)是13cm,高是12cm,則該圓錐形的側(cè)面積是    .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,∠AOB是⊙O的圓心角,∠AOB=90°,則弧所對(duì)圓周角∠ACB的度數(shù)是(     )
A.40°B.45°C.50°D.80°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,扇形OAB的圓心角為120°,半徑為6cm.⑴請(qǐng)用尺規(guī)作出扇形的對(duì)稱(chēng)軸(不寫(xiě)做法,保留作圖痕跡).⑵若將此扇形圍成一個(gè)圓錐的側(cè)面(不計(jì)接縫),求圓錐的底面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案