【題目】如圖,在矩形ABCD中,CD=2,AD=4,點(diǎn)P在BC上,將△ABP沿AP折疊,點(diǎn)B恰好落在對(duì)角線AC上的E點(diǎn).O為AC上一點(diǎn),⊙O經(jīng)過(guò)點(diǎn)A,P.
(1)求證:BC是⊙O的切線;
(2)在邊CB上截取CF=CE,點(diǎn)F是線段BC的黃金分割點(diǎn)嗎?請(qǐng)說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)點(diǎn)F是線段BC的黃金分割點(diǎn),理由見(jiàn)解析
【解析】
(1)因?yàn)槭钦郫B,可得∠BAP=∠OAP,進(jìn)而推導(dǎo)出AB∥OP,從而證垂直而得到切線;
(2)在Rt△ABC中,得出AC的長(zhǎng),在根據(jù)幾何關(guān)系,可分別求出CF、BF的長(zhǎng)度,得其比值為黃金比例
(1)證明:如圖,連接OP,則OA=OP
∴∠OAP=∠OPA.
由折疊知∠BAP=∠OAP,∴∠OPA=∠BAP. ∴AB∥OP.
又∵AB⊥BC,∴OP⊥BC.
∴BC是⊙O的切線.
(2)點(diǎn)F是線段BC的黃金分割點(diǎn),理由如下:
在矩形ABCD中,∵AB=CD=2,BC=AD=4,
∴AC=
又∵AE=AB=2,∴CE=CF=2-2.
∴BF=BC-CF=6-2
∵CF2=(2-2)2=24-8 ,
BFBC=4(6-2)=24-8 ,
∴CF2=BFBC.
∴點(diǎn)F是線段BC的黃金分割點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,為放置在水平桌面上的臺(tái)燈,底座的高為.長(zhǎng)度均為的連桿,與始終在同一水平面上.
(1)旋轉(zhuǎn)連桿,,使成平角,,如圖2,求連桿端點(diǎn)離桌面的高度.
(2)將(1)中的連桿繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使,如圖3,問(wèn)此時(shí)連桿端點(diǎn)離桌面的高度是增加了還是減少?增加或減少了多少?(精確到,參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(4,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)如圖1,點(diǎn)E是第一象限的拋物線上的一個(gè)動(dòng)點(diǎn).當(dāng)△ACE面積最大時(shí),請(qǐng)求出點(diǎn)E的坐標(biāo);
(3)如圖2,在拋物線上是否存在一點(diǎn)P,使∠CAP=45°?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,點(diǎn)G是等邊三角形AOB的外心,點(diǎn)A在第一象限,點(diǎn)B坐標(biāo)為(4,0),連結(jié)OG.拋物線y=ax(x﹣2)+1+的頂點(diǎn)為P.
(1)直接寫(xiě)出點(diǎn)A的坐標(biāo)與拋物線的對(duì)稱(chēng)軸;
(2)連結(jié)OP,求當(dāng)∠AOG=2∠AOP時(shí)a的值.
(3)如圖②,若拋物線開(kāi)口向上,點(diǎn)C,D分別為拋物線和線段AB上的動(dòng)點(diǎn),以CD為底邊構(gòu)造頂角為120°的等腰三角形CDE(點(diǎn)C,D,E成逆時(shí)針順序),連結(jié)GE.
①點(diǎn)Q在x軸上,當(dāng)四邊形GDQO為平行四邊形時(shí),求GQ的值;
②當(dāng)GE的最小值為1時(shí),求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°,點(diǎn)D,E分別在AC,BC上,且CD·BC=AC·CE,以E為圓心,DE長(zhǎng)為半徑作圓,⊙E經(jīng)過(guò)點(diǎn)B,與AB,BC分別交于點(diǎn)F,G.
(1)求證:AC是⊙E的切線;
(2)若AF=4,CG=5,
①求⊙E的半徑;
②若Rt△ABC的內(nèi)切圓圓心為I,則IE= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“端午節(jié)”是我國(guó)的傳統(tǒng)佳節(jié),民間歷來(lái)有吃“粽子”的習(xí)俗.我市某食品廠為了解市民對(duì)去年銷(xiāo)量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A,B,C,D表示)這四種不同口味粽子的喜愛(ài)情況,在節(jié)前對(duì)某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整).
請(qǐng)根據(jù)以上信息回答:
(1)將兩幅不完整的圖補(bǔ)充完整;
(2)本次參加抽樣調(diào)查的居民有多少人?
(3)若居民區(qū)有8000人,請(qǐng)估計(jì)愛(ài)吃D粽的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,BD是△ABC的角平分線,點(diǎn)E、F分別在AB、BC上,且ED//BC,EF//AC.
(1)求證:BE=DE;
(2)當(dāng)AB=AC時(shí),試說(shuō)明四邊形EFCD為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長(zhǎng)FP交BA延長(zhǎng)線于點(diǎn)Q,下列結(jié)論正確的個(gè)數(shù)是( )
①AE=BF;②AE⊥BF;③sin∠BQP=;④S四邊形ECFG=2S△BGE.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中華文化,源遠(yuǎn)流長(zhǎng),在文學(xué)方面,《西游記》、《三國(guó)演義》、《水滸傳》、《紅樓夢(mèng)》是我國(guó)古代長(zhǎng)篇小說(shuō)中的典型代表,被稱(chēng)為“四大古典名著”,某中學(xué)為了了解學(xué)生對(duì)四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問(wèn)題做法全校學(xué)生中進(jìn)行了抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制城如圖所示的兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解決下列問(wèn)題:
(1)本次調(diào)查所得數(shù)據(jù)的眾數(shù)是 部,中位數(shù)是 部,扇形統(tǒng)計(jì)圖中“1部”所在扇形的圓心角為 度.
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)沒(méi)有讀過(guò)四大古典名著的兩名學(xué)生準(zhǔn)備從四大固定名著中各自隨機(jī)選擇一部來(lái)閱讀,則他們選中同一名著的概率為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com