二次函數(shù)y=ax2+bx+c的圖象如圖所示,則abc,b2-4ac,2a+b,a+b+c這四個式子中,請分別判斷其值的符號并說明理由.
(1)abc>0,
理由是:∵拋物線開口向上,
∴a>0
∵拋物線交y軸負半軸
∴c<0
又∵對稱軸交x軸的正半軸
-
b
2a
>0
,而a>0
∴b<0,∴abc>0;
(2)b2-4ac>0.
理由是:
∵拋物線與x軸有兩個交點,
∴b2-4ac>0;
(3)2a+b<0,
理由是:
∵-
b
2a
<1
∴-b<2a,
∴2a+b>0;
(4)a+b+c<0,理由是:
由圖象可知,當x=1時,y<0
而當x=1時,y=a+b+c
∴a+b+c<0.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=x2-6x+8.求:
(1)拋物線與x軸和y軸相交的交點坐標;
(2)拋物線的頂點坐標;
(3)畫出此拋物線圖象,利用圖象回答下列問題:
①方程x2-6x+8=0的解是什么?
②x取什么值時,函數(shù)值大于0?
③x取什么值時,函數(shù)值小于0?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

為了備戰(zhàn)2008奧運會,中國足球隊在某次訓練中,一隊員在距離球門12米處的挑射,正好從2.4米高(球門橫梁底側(cè)高)入網(wǎng).若足球運行的路線是拋物線y=ax2+bx+c(如圖所示),則下列結(jié)論正確的是( 。
①a<-
1
60
;②-
1
60
<a<0;③a-b+c>0;④0<b<-12a.
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,將△ABC的三個頂點的橫坐標同時乘以-1得到三個新的頂點A′,B′,C′,則△ABC與△A′B′C′關(guān)于y軸對稱(對稱變換);如圖2,將⊙O(x2+y2=2)向上平移2個單位,在向右平移3個單位得到⊙A (x-3)2+(y-2)2=2(平移變換);如圖3,把y=x2的圖象上點的橫坐標不變,所有點的縱坐標同時乘以4得到一個新圖象,則新圖象的解析式為
1
4
y=x2
,即y=4x2(伸縮變換).試回答問題:
(1)y=x2-x+1的圖象關(guān)于原點對稱圖象的解析式為______;
(2)將y=-
1
x
的圖象向左平移3個單位,再向下平移4個單位,得到的圖象的解析式為______;
(3)將y=5x+1的圖象所有點的縱坐標不變,橫坐標縮短為原來的
1
5
,得到的圖象的解析式為______;
(4)試探究:拋物線y=3x2-6x+1是由拋物線y=x2通過怎樣的變換而得到的?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①a、b同號;②當x=1和x=3時,函數(shù)值y相等;③4a+b=0;④當y=2時,x的值只能取0;⑤x=-1是關(guān)于x的方程ax2+bx+c=0的一個解.其中正確的有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示四個二次函數(shù)的圖象中,分別對應(yīng)的是①y=ax2;②y=bx2;③y=cx2;④y=dx2.則a、b、c、d的大小關(guān)系為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若二次函數(shù)y=ax2+bx+a2-2(a,b為常數(shù))的圖象如下,則a的值為( 。
A.-2B.-
2
C.1D.
2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結(jié)論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a-b>m(am+b),(m≠-1的實數(shù))其中正確的結(jié)論有______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線y=-x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是______.

查看答案和解析>>

同步練習冊答案