分析 如圖,將△ACD繞點C逆時針旋轉(zhuǎn)90°得到△CBP,作CM⊥AB于M,EN⊥AB于N,在NA上截取一點H,使得NH=NE,連接HE,PG,由△GCD≌△GCP,推出DG=PG,再證明△CDM≌△DEN,只要證明DF是△AHE中位線,求出HE即可解決問題.
解答 解:如圖,將△ACD繞點C逆時針旋轉(zhuǎn)90°得到△CBP,作CM⊥AB于M,EN⊥AB于N,在NA上截取一點H,使得NH=NE,連接HE,PG.
∵AC=BC,∠ACB=90°,
∴∠CAB=∠CBA=45°,
∵DC=DE,∠CDE=90°,
∴∠DCE=45°,
∴∠ACD+∠BCG=45°,
∵∠ACD=∠BCP,
∴∠GCP=∠GCD=45°,
在△GCD和△GCP中,
$\left\{\begin{array}{l}{GC=GC}\\{∠GCP=GCD}\\{CD=CP}\end{array}\right.$,
∴△GCD≌△GCP,
∴DG=PG,
∵∠PBG=∠PBC+∠CBG=90°,BG=6,PB=AD=8,
∴PG=DG=$\sqrt{{6}^{2}+{8}^{2}}$=10,
∴AB=AD+DG+BG=24,CM=AM=MB=12,DM=AM-AD=4,
∵∠DCM+∠CDM=90°,∠CDM+∠EDN=90°,
∴∠DCM=∠EDN,
在△CDM和△DEN中,$\left\{\begin{array}{l}{∠DCM=∠EDN}\\{∠CMD=∠DNE}\\{CD=DE}\end{array}\right.$,
∴△CDM≌△DEN,
∴DM=NE=HN=4,CM=DN=AM,
∴AD=NM,DH=AD,
∵AF=FE,
∴DF=$\frac{1}{2}$HE=$\frac{1}{2}$$\sqrt{{4}^{2}+{4}^{2}}$=2$\sqrt{2}$.
故答案為:$2\sqrt{2}$.
點評 本題考查旋轉(zhuǎn)變換、全等三角形判定和性質(zhì)、勾股定理、三角形中位線定理等知識,解題的關(guān)鍵是學(xué)會利用旋轉(zhuǎn)添加輔助線,構(gòu)造全等三角形解決問題,學(xué)會利用三角形中位線定理解決線段問題,屬于中考壓軸題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 55800000千米 | B. | 5.58×104千米 | C. | 5.58×106千米 | D. | 5.58×107千米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.9×1014 | B. | 2.0×1014 | C. | 7.6×1015 | D. | 1.9×1015 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.75×109元 | B. | 1.75×1010元 | C. | 0.175×1011元 | D. | 17.5×109元 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com