【題目】任大叔決定在承包的荒山上種櫻桃樹,第一次用1000元購進了一批樹苗,第二次又用1000元購進該種樹苗,但這次每棵樹苗的進價是第一次進價的2,購進數(shù)量比第次少了100棵;

(1)求第一次每棵樹苗的進價是多少元?

(2)一年后,樹苗的成活率為85%,每棵櫻桃樹平均產(chǎn)櫻桃30,任大叔將兩批櫻桃樹所產(chǎn)櫻桃按同一價格全部銷售完畢后,獲利不低于89800,求每斤櫻桃的售價至少是多少元?

【答案】1)第一次每棵樹苗進價為5元;(2)每斤櫻桃的售價至少為12.

【解析】

(1)首先設(shè)第一次每棵樹苗的進價是元,則第二次每棵樹苗的進價是2X,依題意得等量關(guān)系:第一購進樹苗的棵數(shù)-第二次購進樹苗的棵樹=100,由等量關(guān)系列出方程即

(2)設(shè)每斤蘋果的售價是a,依題意得等量關(guān)系兩次購進樹苗的總棵樹x成活率為85%×每棵果樹平均產(chǎn)蘋果30-兩次購進樹苗的成本289800,根據(jù)不等關(guān)系代入相應(yīng)的數(shù)值,列出不等式

1)解:設(shè)第一次每棵樹苗進價為.

根據(jù)題意

解得

檢驗:經(jīng)檢驗是原方程的解

答:第一次每棵樹苗進價為5.

(2)解:設(shè)每斤櫻桃的售價為m.

根據(jù)題意

解得

答:每斤櫻桃的售價至少為12.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某海監(jiān)船以20km/h的速度在某海域執(zhí)行巡航任務(wù),當海監(jiān)船由西向東航行至A處時,測得島嶼P恰好在其正北方向,繼續(xù)向東航行1小時到達B處,測得島嶼P在其北偏西30°方向,保持航向不變又航行2小時到達C處,此時海監(jiān)船與島嶼P之間的距離(即PC的長)為_____km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一動點從半徑為2O上的A0點出發(fā),沿著射線A0O方向運動到O上的點A1處,再向左沿著與射線A1O夾角為60°的方向運動到O上的點A2處;接著又從A2點出發(fā),沿著射線A2O方向運動到O上的點A3處,再向左沿著與射線A3O夾角為60°的方向運動到O上的點A4處;A4A0間的距離是_____;…按此規(guī)律運動到點A2019處,則點A2019與點A0間的距離是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點D,BC是⊙O的切線,EBC的中點,連接AE、DE

1)求證:DE是⊙O的切線;

2)設(shè)△CDE的面積為 S1,四邊形ABED的面積為 S2.若 S25S1,求tanBAC的值;

3)在(2)的條件下,若AE3,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠A=60°,AB=8cm,如圖①,點E,H從點A開始向B,D運動,同時點F,G從點CB,D運動,運動速度都為1cm/秒,運動時間為t秒(0≤t<8.

1)當運動時間t=4時,求證:四邊形EFGH為矩形;

2)當t等于多少秒時,四邊形EFGH面積是菱形ABCD面積的;

3)如圖②,連接HF,BG,當t等于多少秒時,HFBG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點E,∠ABC的平分線交AD于點F

1)求證:四邊形ABEF是菱形;

2)若AE6,BF8,平行四邊形ABCD的面積是36,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD,點E,F分別在CDBC上,且∠EAF=∠DAE+∠BAF,則的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)在一塊矩形ABCD的空地上劃一塊四邊形MNPQ進行綠化,為了綠化環(huán)境又節(jié)省成本.如圖,已知矩形的邊BC200m,邊ABa m(a為不大于200的常數(shù)),四邊形MNPQ的頂點在矩形的邊上,且AMBNCPDQx m,設(shè)四邊形MNPQ的面積為S m2

(1)S關(guān)于x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;

(2)a120,求S的最小值,并求出此時x的值;

(3)a200,且每平方米綠化費用需50元,則此時綠化最低費用為______萬元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應(yīng)點B1的坐標是(1,2),則點A1,C1的坐標分別是 ( 。

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1)

C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

同步練習(xí)冊答案