【題目】如圖,在Rt△ABC中,∠A=30°,∠C=90°,E是斜邊AB的中點,點P為AC邊上一動點,若Rt△ABC的直角邊AC=4,則PB+PE的最小值等于_____.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,拋物線y=ax2+bx+3與坐標軸分別交于點A,B(﹣3,0),C(1,0),點P是線段AB上方拋物線上的一個動點.
(1)求拋物線解析式;
(2)當點P運動到什么位置時,△PAB的面積最大?
(3)過點P作x軸的垂線,交線段AB于點D,再過點P作PE∥x軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(4分)如圖,拋物線的對稱軸是.且過點(,0),有下列結論:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正確的結論是 .(填寫正確結論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與雙曲線相交于A(-1,2)和B(2,b)兩點,與y軸交于點C,與x軸交于點D.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出不等式的解集;
(3)經(jīng)研究發(fā)現(xiàn):在y軸負半軸上存在若干個點P,使得為等腰三角形。請直接寫出P點所有可能的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E分別是AC、AB的中點,連接DE.點P從點D出發(fā),沿DE方向勻速運動,速度為1cm/s;同時,點Q從點B出發(fā),沿BA方向勻速運動,速度為2cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設運動時間為t(0<t<4)s.解答下列問題:
(1)當t為何值時,以點E、P、Q為頂點的三角形與△ADE相似?
(2)當t為何值時,△EPQ為等腰三角形?(直接寫出答案即可);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在等邊三角形ABC中,BC=8cm,射線AG∥BC,點E從點A出發(fā)沿射線AG以lcm/s的速度運動,同時點F從點B出發(fā)沿射線BC以2cm/s的速度運動,設運動時間為t(s)
(1)填空:當t為 s時,△ABF是直角三角形;
(2)連接EF,當EF經(jīng)過AC邊的中點D時,四邊形AFCE是否是特殊四邊形?請證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小圓同學對圖形旋轉前后的線段之間、角之間的關系進行了拓展探究.
(一)猜測探究
在中,,是平面內任意一點,將線段繞點按順時針方向旋轉與相等的角度,得到線段,連接.
(1)如圖1,若是線段上的任意一點,請直接寫出與的數(shù)量關系是 ,與的數(shù)量關系是 ;
(2)如圖2,點是延長線上點,若是內部射線上任意一點,連接,(1)中結論是否仍然成立?若成立,請給予證明,若不成立,請說明理由.
(二)拓展應用
如圖3,在中,,,,是上的任意點,連接,將繞點按順時針方向旋轉,得到線段,連接.求線段長度的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,按以下步驟作圖:①分別以點C和點D為圓心,大于為半徑作弧,兩弧交于點M,N;②作直線MN,且恰好經(jīng)過點A,與CD交于點E,連接BE,則下列說法錯誤的是( )
A.B.C.若AB=4,則D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1(注:與圖2完全相同),在直角坐標系中,拋物線經(jīng)過點三點,,.
(1)求拋物線的解析式和對稱軸;
(2)是拋物線對稱軸上的一點,求滿足的值為最小的點坐標(請在圖1中探索);
(3)在第四象限的拋物線上是否存在點,使四邊形是以為對角線且面積為的平行四邊形?若存在,請求出點坐標,若不存在請說明理由.(請在圖2中探索)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com