【題目】如圖,在RtABC中,∠A=30°,∠C=90°E是斜邊AB的中點,點PAC邊上一動點,若RtABC的直角邊AC=4,則PB+PE的最小值等于_____

【答案】4

【解析】

如圖所示,作點B關于AC的對稱點D,連接PD,則可得PB+PE=PD+PE,當EP,D在同一直線上時,PB+PE的最小值即為線段DE的長,據(jù)此求解即可得.

如圖所示,作點B關于AC的對稱點D,連接PD,則PB=PD

PB+PE=PD+PE,

E,P,D在同一直線上時,PB+PE的最小值即為線段DE的長,

RtABC中,∠A=30°,∠C=90°E是斜邊AB的中點,

AB=2BE=2BC=BD,∠ABC=DBE,

∴△ABC≌△DBE

DE=AC=4,

PB+PE的最小值等于4,

故答案為:4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,拋物線yax2+bx+3與坐標軸分別交于點A,B(﹣3,0),C1,0),點P是線段AB上方拋物線上的一個動點.

1)求拋物線解析式;

2)當點P運動到什么位置時,△PAB的面積最大?

3)過點Px軸的垂線,交線段AB于點D,再過點PPEx軸交拋物線于點E,連接DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】4分)如圖,拋物線的對稱軸是.且過點(,0),有下列結論:abc0;a﹣2b+4c=0;25a﹣10b+4c=03b+2c0;a﹣b≥mam﹣b);其中所有正確的結論是 .(填寫正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與雙曲線相交于A(-1,2)B(2,b)兩點,與y軸交于點C,與x軸交于點D.

(1)求一次函數(shù)的解析式;

(2)根據(jù)圖象直接寫出不等式的解集;

(3)經(jīng)研究發(fā)現(xiàn):在y軸負半軸上存在若干個點P,使得為等腰三角形。請直接寫出P點所有可能的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠C=90°AC=6cm,BC=8cm,D、E分別是ACAB的中點,連接DE.點P從點D出發(fā),沿DE方向勻速運動,速度為1cm/s;同時,點Q從點B出發(fā),沿BA方向勻速運動,速度為2cm/s,當點P停止運動時,點Q也停止運動.連接PQ,設運動時間為t0t4s.解答下列問題:

1)當t為何值時,以點E、P、Q為頂點的三角形與ADE相似?

2)當t為何值時,EPQ為等腰三角形?(直接寫出答案即可);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在等邊三角形ABC中,BC8cm,射線AGBC,點E從點A發(fā)沿射線AGlcm/s的速度運動,同時點F從點B出發(fā)沿射線BC2cm/s的速度運動,設運動時間為ts

1)填空:當t   s時,△ABF是直角三角形;

2)連接EF,當EF經(jīng)過AC邊的中點D時,四邊形AFCE是否是特殊四邊形?請證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小圓同學對圖形旋轉前后的線段之間、角之間的關系進行了拓展探究.

(一)猜測探究

中,,是平面內任意一點,將線段繞點按順時針方向旋轉與相等的角度,得到線段,連接

1)如圖1,若是線段上的任意一點,請直接寫出的數(shù)量關系是   ,的數(shù)量關系是   ;

2)如圖2,點延長線上點,若內部射線上任意一點,連接,(1)中結論是否仍然成立?若成立,請給予證明,若不成立,請說明理由.

(二)拓展應用

如圖3,在中,,,,上的任意點,連接,將繞點按順時針方向旋轉,得到線段,連接.求線段長度的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,按以下步驟作圖:①分別以點C和點D為圓心,大于為半徑作弧,兩弧交于點M,N;②作直線MN,且恰好經(jīng)過點A,與CD交于點E,連接BE,則下列說法錯誤的是( )

A.B.C.AB=4,則D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1(注:與圖2完全相同),在直角坐標系中,拋物線經(jīng)過點三點,,

1)求拋物線的解析式和對稱軸;

2是拋物線對稱軸上的一點,求滿足的值為最小的點坐標(請在圖1中探索);

3)在第四象限的拋物線上是否存在點,使四邊形是以為對角線且面積為的平行四邊形?若存在,請求出點坐標,若不存在請說明理由.(請在圖2中探索)

查看答案和解析>>

同步練習冊答案