【題目】一副三角板按如圖方式擺放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E為AB的中點(diǎn),過(guò)點(diǎn)E作EF⊥CD于點(diǎn)F.若AD=4cm,則EF的長(zhǎng)為cm.
【答案】( + )
【解析】解:過(guò)點(diǎn)A作AG⊥DC與G.
∵∠DCB=∠CBD=45°,∠ADB=90°,
∴解ADG=45°.
∴AG= =2 .
∵∠ABD=30°,
∴BD= AD=4 .
∵∠CBD=45°,
∴CB= =2 .
∵AG⊥CG,EF⊥CG,CB⊥CG,
∴AG∥EF∥BC.
又∵E是AB的中點(diǎn),
∴F為CG的中點(diǎn),
∴EF= (AG+BC)= (2 +2 )= + .
所以答案是:( + ).
【考點(diǎn)精析】本題主要考查了梯形的中位線的相關(guān)知識(shí)點(diǎn),需要掌握梯形的中位線平行于梯形的兩底并等于兩底和的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠BOC=65°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處.
(1)如圖①,將三角板MON的一邊ON與射線OB重合時(shí),則∠MOC= ;
(2)如圖②,將三角板MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一定角度,此時(shí)OC是∠MOB的角平分線,求旋轉(zhuǎn)角∠BON= ;∠CON= .
(3)將三角板MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至圖③時(shí),∠NOC=5°,求∠AOM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校計(jì)劃組織師生共300人參加一次大型公益活動(dòng),如果租用6輛大客車(chē)和5輛小客車(chē)恰好全部坐滿,已知每輛大客車(chē)的乘客座位數(shù)比小客車(chē)多17個(gè).
(1)求每輛大客車(chē)和每輛小客車(chē)的乘客座位數(shù);
(2)由于最后參加活動(dòng)的人數(shù)增加了30人,學(xué)校決定調(diào)整租車(chē)方案,在保持租用車(chē)輛總數(shù)不變的情況下,為將所有參加活動(dòng)的師生裝載完成,求租用小客車(chē)數(shù)量的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電子品牌商下設(shè)臺(tái)式電腦部、平板電腦部、手機(jī)部等.2018年的前五個(gè)月該品牌全部商品銷(xiāo)售額共計(jì)600萬(wàn)元.下表表示該品牌商2018年前五個(gè)月的月銷(xiāo)售額(統(tǒng)計(jì)信息不全).圖1表示該品牌手機(jī)部各月銷(xiāo)售額占該品牌所有商品當(dāng)月銷(xiāo)售額的百分比情況統(tǒng)計(jì)圖.
品牌月銷(xiāo)售額統(tǒng)計(jì)表(單位:萬(wàn)元)
月份 | 1月 | 2月 | 3月 | 4月 | 5月 |
品牌月銷(xiāo)售額 | 180 | 90 | 115 | 95 |
()該品牌5月份的銷(xiāo)售額是 萬(wàn)元;
()手機(jī)部5月份的銷(xiāo)售額是 萬(wàn)元;
小明同學(xué)觀察圖1后認(rèn)為,手機(jī)部5月份的銷(xiāo)售額比手機(jī)部4月份的銷(xiāo)售額減少了,你同意他的看法嗎?請(qǐng)說(shuō)明理由;
()該品牌手機(jī)部有A、B、C、D、E五個(gè)機(jī)型,圖2表示在5月份手機(jī)部各機(jī)型銷(xiāo)售額占5月份手機(jī)部銷(xiāo)售額的百分比情況統(tǒng)計(jì)圖.則5月份 機(jī)型的銷(xiāo)售額最高,銷(xiāo)售額最高的機(jī)型占5月份該品牌銷(xiāo)售額的百分比是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元前5世紀(jì),畢達(dá)哥拉斯學(xué)派中的一名成員希伯索斯發(fā)現(xiàn)了無(wú)理數(shù) ,導(dǎo)致了第一次數(shù)學(xué)危機(jī), 是無(wú)理數(shù)的證明如下: 假設(shè) 是有理數(shù),那么它可以表示成 (p與q是互質(zhì)的兩個(gè)正整數(shù)).于是( )2=( )2=2,所以,q2=2p2 . 于是q2是偶數(shù),進(jìn)而q是偶數(shù),從而可設(shè)q=2m,所以(2m)2=2p2 , p2=2m2 , 于是可得p也是偶數(shù).這與“p與q是互質(zhì)的兩個(gè)正整數(shù)”矛盾.從而可知“ 是有理數(shù)”的假設(shè)不成立,所以, 是無(wú)理數(shù).
這種證明“ 是無(wú)理數(shù)”的方法是( )
A.綜合法
B.反證法
C.舉反例法
D.數(shù)學(xué)歸納法
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,其邊長(zhǎng)為2,點(diǎn)A,點(diǎn)C分別在x軸,y軸的正半軸上,函數(shù)y=2x的圖象與CB交于點(diǎn)D,函數(shù)y= (k為常數(shù),k≠0)的圖象經(jīng)過(guò)點(diǎn)D,與AB交于點(diǎn)E,與函數(shù)y=2x的圖象在第三象限內(nèi)交于點(diǎn)F,連接AF、EF.
(1)求函數(shù)y= 的表達(dá)式,并直接寫(xiě)出E、F兩點(diǎn)的坐標(biāo);
(2)求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的七邊形ABCDEFG中,AB、ED的延長(zhǎng)線相交于O點(diǎn).若圖中∠1、∠2、∠3、∠4的外角的角度和為220°,則∠BOD的度數(shù)是( 。
A. 400 B. 450 C. 500 D. 600
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從汽車(chē)燈的點(diǎn)O處發(fā)出的一束光線經(jīng)燈的反光罩反射后沿CO方向平行射出,如入射光線OA的反射光線為AB,在如圖中所示的截面內(nèi),若入射光線OD經(jīng)反光罩反射后沿DE射出,且則的度數(shù)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】梅嶺中學(xué)為了解“課程選修”的情況,對(duì)報(bào)名參加“藝術(shù)欣賞”,“科技制作”,“數(shù)學(xué)思維”,“閱讀寫(xiě)作”這四個(gè)選修項(xiàng)目的學(xué)生(每人限報(bào)一課)進(jìn)行抽樣調(diào)查,下面是根據(jù)收集的數(shù)據(jù)繪制的不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中提供的信息,解答下面的問(wèn)題:
(1)此次共調(diào)查了______名學(xué)生,扇形統(tǒng)計(jì)圖中“藝術(shù)欣賞”部分的圓心角是______度;
(2)請(qǐng)把這個(gè)條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)現(xiàn)該校共有800名學(xué)生報(bào)名參加這四個(gè)選修項(xiàng)目,請(qǐng)你估計(jì)其中有多少名學(xué)生選修 “科技制作”項(xiàng)目.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com