求證:如果a,b是互質(zhì)的正整數(shù),c是整數(shù),且方程ax+by=c ①,有一組整數(shù)解x0,y0,則此方程的一切整數(shù)解可以表示為
x=x0-bt
y=y0+at
,其中t=0,±1,±2,±3,….
分析:把x0,y0代入原方程中可得到一個方程,設方程的任一組解可得到第二個方程,聯(lián)立兩個方程求解,再根據(jù)a,b是互質(zhì)的正整數(shù),c是整數(shù),即可得到原方程解的表示形式,即可證明結論.
解答:證明:因為x0,y0是方程①的整數(shù)解,當然滿足ax0+by0=c,②
因此a(x0-bt)+b(y0+at)=ax0+by0=c.
這表明x=x0-bt,y=y0+at也是方程①的解.
設x′,y′是方程①的任一整數(shù)解,則有
ax′+by′=c.③
③-②得
a(x′-x0)=b′(y0-y′).④
∵a,b是互質(zhì)的正整數(shù)即(a,b)=1,
∴即y′=y0+at,其中t是整數(shù).將y′=y0+at代入④,即得x′=x0-bt.
∴x′,y′可以表示成x=x0-bt,y=y0+at的形式,
∴x=x0-bt,y=y0+at表示方程①的一切整數(shù)解.
點評:本題考查了二元一次方程的解和二元一次方程組的解.當沒有條件限制時,二元一次方程的解有無數(shù)個.求不定方程的整數(shù)解,先將方程做適當變形,確定其中一個未知數(shù)的取值范圍,然后列舉出適合條件的所有整數(shù)值,再求出另一個未知數(shù)的值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

求證:如果a,b是互質(zhì)的正整數(shù),c是整數(shù),且方程ax+by=c ①,有一組整數(shù)解x0,y0,則此方程的一切整數(shù)解可以表示為數(shù)學公式,其中t=0,±1,±2,±3,….

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

求證:如果a,b是互質(zhì)的正整數(shù),c是整數(shù),且方程ax+by=c ①,有一組整數(shù)解x0,y0,則此方程的一切整數(shù)解可以表示為
x=x0-bt
y=y0+at
,其中t=0,±1,±2,±3,….

查看答案和解析>>

同步練習冊答案