A. | 1:2 | B. | 1:3 | C. | 1:4 | D. | 1:1 |
分析 先利用三角形中位線性質(zhì)得到DE∥BC,DE=$\frac{1}{2}$BC,則可判斷△ADE∽△ABC,于是根據(jù)相似三角形的性質(zhì)得到$\frac{{S}_{△ADE}}{{S}_{△ABC}}$=$\frac{1}{4}$,然后利用比例性質(zhì)即可得到△ADE的面積與四邊形BCED的面積的比為1:3.
解答 解:∵點(diǎn)D、E分別為△ABC的邊AB、AC上的中點(diǎn),
∴DE為△ABC的中位線,
∴DE∥BC,DE=$\frac{1}{2}$BC,
∴△ADE∽△ABC,
∴$\frac{{S}_{△ADE}}{{S}_{△ABC}}$=($\frac{DE}{BC}$)2=$\frac{1}{4}$,
∴△ADE的面積與四邊形BCED的面積的比為1:3.
故選B.
點(diǎn)評(píng) 本題考查了相似三角形的判定于性質(zhì):在判定兩個(gè)三角形相似時(shí),應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形;在利用相似三角形的性質(zhì)時(shí)主要利用相似比進(jìn)行幾何計(jì)算.也考查了三角形中位線定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x1=0,x2=$\frac{2}{5}$ | B. | x1=0,x2=-$\frac{2}{5}$ | C. | x1=0,x2=$\frac{5}{2}$ | D. | x1=0,x2=-$\frac{5}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x+4 | B. | 7 | C. | 5 | D. | 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com