【題目】如圖,將8個(gè)邊長(zhǎng)為1的小正方形疊放,過(guò)其四個(gè)角的頂點(diǎn)A、E、F、G作一個(gè)矩形ABCD,則矩形ABCD的面積為__________.
【答案】
【解析】
根據(jù)矩形、正方形的性質(zhì)可以證得,,設(shè),,則可求得,,根據(jù),求得,所以,從而求得矩形的面積.
如圖,
∵四邊形ABCD是矩形,AE、EF、FG是8個(gè)小正方形組成的圖形的邊,
∴∠C=∠D =∠EFG=,
∴∠3+∠4=∠5+∠6=∠4+∠5=,
∴∠3=∠5,
∴,
∴,
設(shè),,則,,
∵四邊形ABCD是矩形,AE、EF、FG是正方形的邊,
∴∠B=∠C=∠AEF =,
∴∠1+∠2=∠3+∠4=∠2+∠3=,
∴∠1=∠3,
,∠B=∠C=,
∴,
∴,,
∵四邊形ABCD是矩形,
∴,
∴,
∴,
在中,∠C=,,,,
∴,
∴,
∴,
矩形ABCD的面積為:
.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=2x﹣1交y軸于A,交雙曲線y=(k>0,x>0)于B,將線段AB繞B點(diǎn)逆時(shí)針?lè)较蛐D(zhuǎn)90°,A點(diǎn)的對(duì)應(yīng)點(diǎn)為C,若C點(diǎn)落在雙曲線y=(k>0,x>0)上,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑, BC交⊙O于點(diǎn)D,E是的中點(diǎn),連接AE交BC于點(diǎn)F,∠ACB =2∠EAB.
(1)求證:AC是⊙O的切線;
(2)若,,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是方城縣潘河的某一段,現(xiàn)要估算河的寬度(即河兩岸相對(duì)的兩點(diǎn)A、B間的距離),可以按如下步驟操作:①先在河的對(duì)岸選定一個(gè)目標(biāo)作為點(diǎn)A;②再在河的這一邊選定點(diǎn)B和點(diǎn)C,使AB⊥BC;③再選定點(diǎn)E,使EC⊥BC,然后用視線確定BC和AE的交點(diǎn)D.
(1)用皮尺測(cè)得BC=177米,DC=61米,EC=50米,求河的寬度AB;(精確到0.1米)
(2)請(qǐng)用所學(xué)過(guò)的知識(shí)設(shè)計(jì)一種測(cè)量旗桿高度AB的方案.
要求:①畫(huà)出示意圖,所測(cè)長(zhǎng)度用a、b、c等表示,直接標(biāo)注在圖中線段上;
②不要求寫(xiě)操作步驟;③結(jié)合所測(cè)數(shù)據(jù)直接用含a、b、c等字母的式子表示出旗桿高度AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某電視臺(tái)的一檔娛樂(lè)性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機(jī)分選游戲雙方的組員,主持人設(shè)計(jì)了以下游戲:用不透明的白布包住三根顏色長(zhǎng)短相同的細(xì)繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細(xì)繩,并拉出,若兩人選中同一根細(xì)繩,則兩人同隊(duì),否則互為反方隊(duì)員.
(1)若甲嘉賓從中任意選擇一根細(xì)繩拉出,求他恰好抽出細(xì)繩AA1的概率;
(2)請(qǐng)用畫(huà)樹(shù)狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊(duì)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y1=的圖象與直線y2=3x-5相交于A(2,m),B(n,-6)兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式;
(2) 當(dāng)y1﹥y2﹥0時(shí),請(qǐng)直接寫(xiě)出x的取值范圍;
(3)連接OA,OB,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+5經(jīng)過(guò)A(﹣5,0),B(﹣4,﹣3)兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為D,連結(jié)CD.
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)P為該拋物線上一動(dòng)點(diǎn)(與點(diǎn)B、C不重合),設(shè)點(diǎn)P的橫坐標(biāo)為t.
①當(dāng)點(diǎn)P在直線BC的下方運(yùn)動(dòng)時(shí),求△PBC的面積的最大值;
②該拋物線上是否存在點(diǎn)P,使得∠PBC=∠BCD?若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4 的打印紙等,這些矩形的長(zhǎng)與寬之比都為:1,我們將具有這類(lèi)特征的矩形稱(chēng)為“完美矩形”如圖(1),在“完美矩形”ABCD 中,點(diǎn) P 為 AB 邊上的定點(diǎn),且 AP=AD.
(1)求證:PD=AB.
(2)如圖(2),若在“完美矩形“ABCD 的邊 BC 上有一動(dòng)點(diǎn) E,當(dāng)的值是多少時(shí),△PDE 的周長(zhǎng)最小?
(3)如圖(3),點(diǎn) Q 是邊 AB 上的定點(diǎn),且 BQ=BC.已知 AD=1,在(2)的條件下連接 DE 并延長(zhǎng)交 AB 的延長(zhǎng)線于點(diǎn) F,連接 CF,G 為 CF 的中點(diǎn),M、N 分別為線段 QF 和 CD 上的動(dòng)點(diǎn),且始終保持 QM=CN,MN 與 DF 相交于點(diǎn) H,請(qǐng)問(wèn) GH 的長(zhǎng)度是定值嗎?若是,請(qǐng)求出它的值,若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若拋物線y=x2﹣3x+c與y軸的交點(diǎn)為(0,2),則下列說(shuō)法正確的是( 。
A. 拋物線開(kāi)口向下
B. 拋物線與x軸的交點(diǎn)為(﹣1,0),(3,0)
C. 當(dāng)x=1時(shí),y有最大值為0
D. 拋物線的對(duì)稱(chēng)軸是直線x=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com