【題目】模型介紹:古希臘有一個著名的“將軍飲馬問題”,大致內容如下:古希臘一位將軍,每天都要巡查河岸側的兩個軍營A、B,他總是先去A營,再到河邊飲馬,之后再去B營,如圖 ①,他時常想,怎么走才能使每天的路程之和最短呢?
大數(shù)學家海倫曾用軸對稱的方法巧妙的解決了這問題
如圖②,作B關于直線l的對稱點B′,連接AB′與直線l交于點C,點C就是所求的位置.
請你在下列的閱讀、應用的過程中,完成解答.
(1)理由:如圖③,在直線L上另取任一點C′,連接AC′,BC′,B′C′,
∵直線l是點B,B′的對稱軸,點C,C′在l上
∴CB= , C′B=
∴AC+CB=AC+CB′= .
在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小
歸納小結:
本問題實際是利用軸對稱變換的思想,把A、B在直線的同側問題轉化為在直線的兩側,從而可利用“兩點之間線段最短”,即轉化為“三角形兩邊之和大于第三邊”的問題加以解決(其中C為AB′與l的交點,即A、C、B′三點共線).
本問題可拓展為“求定直線上一動點與直線外兩定點的距離和的最小值”問題的數(shù)學模型.
(2)模型應用
如圖 ④,正方形ABCD的邊長為2,E為AB的中點,F(xiàn)是AC上一動點.
求EF+FB的最小值
分析:解決這個問題,可以借助上面的模型,由正方形的對稱性可知,B與D關于直線AC對稱,連結ED交AC于F,則EF+FB的最小值就是線段的長度,EF+FB的最小值是 .
如圖⑤,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點B是 的中點,在直徑CD上找一點P,使BP+AP的值最小,則BP+AP的最小值是;
如圖⑥,一次函數(shù)y=﹣2x+4的圖象與x,y軸分別交于A,B兩點,點O為坐標原點,點C與點D分別為線段OA,AB的中點,點P為OB上一動點,求:PC+PD的最小值,并寫出取得最小值時P點坐標.
【答案】
(1)CB';C'B';AB'
(2)DE;;2
【解析】解:(1)理由:如圖③,在直線L上另取任一點C′,連接AC′,BC′,B′C′,
∵直線l是點B,B′的對稱軸,點C,C′在l上
∴CB=CB',C′B=C'B'
∴AC+CB=AC+CB′=AB'.
在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小
所以答案是:CB',C'B',AB';(2)模型應用
①解決這個問題,可以借助上面的模型,由正方形的對稱性可知,B與D關于直線AC對稱,連結ED交AC于F
則EF+FB的最小值就是線段DE的長度,EF+FB的最小值是 .
在正方形ABCD中,AB=AD=2,∠BAD=90°
∵點E是AB中點,
∴AE=1,
根據(jù)勾股定理得,DE= ,
即:EF+FB的最小值 ,
所以答案是:DE, ;
②如圖⑤,
由圓的對稱性可知,A與A'關于直徑CD對稱,連結A'B交CD于F,則AE+EB的最小值就是線A'BE的長度,
∴∠AOD=∠A'OD=60°
∵點B是 的中點,
∴∠AOB=∠BOD= ∠AOD=30°,
∴∠A'OB=90°
∵⊙O的直徑為4,
∴OA=OA'=OB=2,
在Rt△A'OB中,A'B=2 ,
∴BP+AP的最小值是2 .
所以答案是2 ,
③如圖⑥,
由平面坐標系中的對稱性可知,C與C'關于直徑y(tǒng)軸對稱,連結C'D交y軸于P,則PC+PD的最小值就是線C'D的長度,
∵一次函數(shù)y=﹣2x+4的圖象與x,y軸分別交于A,B兩點,
∴A(2,0),B(0,4),
∴C(1,0),D(1,2),
∵C與C'關于直徑y(tǒng)軸對稱,
∴C'(﹣1,0),
∴C'D= =2 ,
∴PC+PD的最小值為2 ,
∵C'(﹣1,0),D(1,2),
∴直線C'D的解析式為y=x+1,
∴P(0,1).
【考點精析】關于本題考查的勾股定理的概念,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】成都市某校在推進新課改的過程中,開設的體育選修課有:A﹣籃球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,學生可根據(jù)自己的愛好選修一門,學校王老師對某班全班同學的選課情況進行調查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖).
(1)求出該班的總人數(shù),并補全頻數(shù)分布直方圖;
(2)求出“足球”在扇形的圓心角是多少度;
(3)該班班委4人中,1人選修籃球,2人選修足球,1人選修排球,李老師要從這4人中人任選2人了解他們對體育選課的看法,請你用列表或畫樹狀圖的方法,求選出的2人恰好1人選修籃球,1人選修足球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A為某旅游景區(qū)的最佳觀景點,游客可從B處乘坐纜車先到達小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車到達A處,返程時從A處乘坐升降電梯直接到達C處,已知:AC⊥BC于C,DE∥BC,AC=200.4米,BD=100米,∠α=30°,∠β=70°,則AE的長度約為米.(參考數(shù)據(jù):sin70≈0.94,cos70°≈0.34,tan70°≈2.25).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明到服裝店進行社會實踐活動,服裝店經(jīng)理讓小明幫助解決以下問題:服裝店準備購進甲乙兩種服裝,甲種每件進價80元,售價120元,乙種每件進價60元,售價90元.計劃購進兩種服裝共100件,其中甲種服裝不少于65件.
(1)若購進這100件服裝的費用不得超過7500元,則甲種服裝最多購進多少件??
(2)在(1)的條件下,該服裝店對甲種服裝以每件優(yōu)惠a(0<a<20)元的價格進行促銷活動,乙種服裝價格不變,那么該服裝店應如何調整進貨方案才能獲得最大利潤?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圖①是一塊邊長為1,周長記為P1的等邊三角形紙板,沿圖①的底邊剪去一塊邊長為 的等邊三角形紙板后得到圖②,然后沿同一底邊依次剪去一塊更小的等邊三角形紙板(即其邊長為前一塊被剪掉的等邊三角形紙板邊長的 )后得到圖 ③,④…,記第n塊剪掉的等邊三角形紙板的周長為Pn , 則Pn= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC、BD相交于點0,過點O作OE⊥AC交AB于E,若BC=4,△AOE的面積為6,則cos∠BOE= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD、BC是⊙O的兩條互相垂直的直徑,點P從點O出發(fā),沿O→C→D→O的路線勻速運動.設∠APB=y(單位:度),那么y與點P運動的時間x(單位:秒)的關系圖是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H.給出下列結論:
①△ABE≌△DCF;② ;③DP2=PHPB;④ .
其中正確的是 . (寫出所有正確結論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】寫出下列命題的已知、求證,并完成證明過程.
命題:如果一個三角形的兩條邊相等,那么兩條邊所對的角也相等(簡稱:“等邊對等角”.)
(1)已知: .
求證: .
(2)證明:“等邊對等角”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com