【題目】直線與交于,,,,則的度數(shù)為_____.
【答案】或
【解析】
根據(jù)題意,分兩種情況:(1)∠BOE是銳角;(2)∠BOE是鈍角;然后根據(jù)垂線的性質(zhì),分類討論,求出∠BOE的度數(shù)是多少即可.
(1)如圖1,
,
∵直線OE⊥CD,
∴∠EOD=90°,
∵∠DOF=55°,
∴∠EOF=90°-55°=35°,
又∵直線OF⊥AB,
∴∠BOF=90°,
∴∠BOE=90°-35°=55°.
(2)如圖2,
,
∵直線OE⊥CD,
∴∠EOD=90°,
∵∠DOF=55°,
∴∠EOF=90°-55°=35°,
又∵直線OF⊥AB,
∴∠BOF=90°,
∴∠BOE=90°+35°=125°.
綜上,可得∠BOE的度數(shù)是125°或55°.
故答案為:125°或55°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, 為實數(shù)).
()當, 取何值時,函數(shù)是二次函數(shù).
()若它是一個二次函數(shù),假設(shè),那么:
①它一定經(jīng)過哪個點?請說明理由.
②若取該函數(shù)上橫坐標滿足(為整數(shù))的所有點,組成新函數(shù).當時, 隨的增大而增大,且時是函數(shù)最小值,求滿足的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組1乘一輛汽車沿公路檢修線路,約定向東為正。某天從A地出發(fā)到收工時,行走記錄為(單位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6。另一小組2也從A地出發(fā),在南北向修,約定向北為正,行走記錄為:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8.
(1)分別計算收工時,1,2兩組在A地的哪一邊,距A地多遠?
(2)若每千米汽車耗油a升,求出發(fā)到收工各耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】速度分別為100km/h和akm/h(0<a<100)的兩車分別從相距s千米的兩地同時出發(fā),沿同一方向勻速前行.行駛一段時間后,其中一車按原速度原路返回,直到與另一車相遇時兩車停止.在此過程中,兩車之間的距離y(km)與行駛時間t(h)之間的函數(shù)關(guān)系如圖所示.下列說法:①a=60;②b=2;③c=b+;④若s=60,則b=.其中說法正確的是( )
A.①②③B.②③④C.①②④D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從相距480km的A.B兩地相向而行,乙車比甲車先出發(fā)1小時,并以各自的速度勻速行駛,途徑C地,甲車到達C地停留1小時,因有事按原路原速返回A地.乙車從B地直達A地,兩車同時到達A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時間x(小時)的關(guān)系如圖,結(jié)合圖象信息解答下列問題:
(1)乙車的速度是___千米/時,t=___小時;
(2)求甲車距它出發(fā)地的路程y與它出發(fā)的時間x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)直接寫出兩車相距150千米時x的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為軸正半軸上一動點,,,且、滿足,.
(1)求的面積;
(2)若,、為線段上的動點,作交于,FP平分∠GFC,FN平分∠AFP交x軸于N,記∠FNB=,求∠BAC(用表示);
(3)若,軸于,點從點出發(fā),在射線上運動,同時另一動點從點向點運動,到停止運動,、的速度分別為2個單位/秒、3個單位/秒,當時,求運動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為建設(shè)美麗農(nóng)村,村委會打算在正方形地塊甲和長方形地塊乙上進行綠化.在兩地塊內(nèi)分別建造一個邊長為的大正方形花壇和四個邊長為的小正方形花壇(陰影部分),空白區(qū)域鋪設(shè)草坪,記表示地塊甲中空白處鋪設(shè)草坪的面積, 表示地塊乙中空白處鋪設(shè)草坪的面積.
(1)__ , (用含的代數(shù)式表示并化簡) .
(2)若,求的值.
(3)若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的是( )
A. 方程5x2=x有兩個不相等的實數(shù)根
B. 方程x2﹣8=0有兩個相等的實數(shù)根
C. 方程2x2﹣3x+2=0有兩個整數(shù)根
D. 當k>時,方程(k﹣1)x2+2x﹣3=0有兩個不相等的實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對平面直角坐標系中的點P(x,y),定義d=|x|+|y|,我們稱d為P(x,y)的幸福指數(shù).對于函數(shù)圖象上任意一點P(x,y),若它的幸福指數(shù)d≥1恒成立,則稱此函數(shù)為幸福函數(shù),如二次函數(shù)y=x2+1就是一個幸福函數(shù),理由如下:設(shè)P(x,y)為y=x2+1上任意一點,d=|x|+|y|=|x|+|x2+1|,∵|x|≥0,|x2+1|=x2+1≥1,∴d≥1.∴y=x2+1是一個幸福函數(shù).
(1)若點P在反比例函數(shù)y=的圖象上,且它的幸福指數(shù)d=2,請直接寫出所有滿足條件的P點坐標;
(2)一次函數(shù)y=﹣x+1是幸福函數(shù)嗎?請判斷并說明理由;
(3)若二次函數(shù)y=x2﹣(2m+1)x+m2+m(m>0)是幸福函數(shù),試求出m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com