【題目】已知開口向下的拋物線y=ax2-2ax+2與y軸的交點為A,頂點為B,對稱軸與x軸的交點為C,點A與點D關(guān)于對稱軸對稱,直線BD與x軸交于點M,直線AB與直線OD交于點N.
(1)求點D的坐標(biāo).
(2)求點M的坐標(biāo)(用含a的代數(shù)式表示).
(3)當(dāng)點N在第一象限,且∠OMB=∠ONA時,求a的值.
【答案】(1)D(2,2);(2);(3)
【解析】
(1)令x=0求出A的坐標(biāo),根據(jù)頂點坐標(biāo)公式或配方法求出頂點B的坐標(biāo)、對稱軸直線,根據(jù)點A與點D關(guān)于對稱軸對稱,確定D點坐標(biāo).
(2)根據(jù)點B、D的坐標(biāo)用待定系數(shù)法求出直線BD的解析式,令y=0,即可求得M點的坐標(biāo).
(3)根據(jù)點A、B的坐標(biāo)用待定系數(shù)法求出直線AB的解析式,求直線OD的解析式,進(jìn)而求出交點N的坐標(biāo),得到ON的長.過A點作AE⊥OD,可證△AOE為等腰直角三角形,根據(jù)OA=2,可求得AE、OE的長,表示出EN的長.根據(jù)tan∠OMB=tan∠ONA,得到比例式,代入數(shù)值即可求得a的值.
(1)當(dāng)x=0時,,
∴A點的坐標(biāo)為(0,2)
∵
∴頂點B的坐標(biāo)為:(1,2-a),對稱軸為x= 1,
∵點A與點D關(guān)于對稱軸對稱
∴D點的坐標(biāo)為:(2,2)
(2)設(shè)直線BD的解析式為:y=kx+b
把B(1,2-a)D(2,2)代入得:
,解得:
∴直線BD的解析式為:y=ax+2-2a
當(dāng)y=0時,ax+2-2a=0,解得:x=
∴M點的坐標(biāo)為:
(3)由D(2,2)可得:直線OD解析式為:y=x
設(shè)直線AB的解析式為y=mx+n,代入A(0,2)B(1,2-a)可得:
解得:
∴直線AB的解析式為y= -ax+2
聯(lián)立成方程組: ,解得:
∴N點的坐標(biāo)為:()
ON=()
過A點作AE⊥OD于E點,則△AOE為等腰直角三角形.
∵OA=2
∴OE=AE=,EN=ON-OE=()-=)
∵M,C(1,0), B(1,2-a)
∴MC=,BE=2-a
∵∠OMB=∠ONA
∴tan∠OMB=tan∠ONA
∴,即
解得:a=或
∵拋物線開口向下,故a<0,
∴ a=舍去,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是邊長為2的正方形,E是AB的中點,F是BC的中點,AF與DE相交于G,BD和AF相交于H,那么四邊形BEGH的面積是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點F在⊙O上,且滿足,過點C作⊙O的切線交AB的延長線于D點,交AF的延長線于E點.
(1)求證:AE⊥DE;
(2)若∠CBA=60°,AE=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,已知,,將繞著點A逆時針旋轉(zhuǎn),記點C的對應(yīng)點為點D,AD、BC的延長線相交于點E.如果線段DE的長為,那么邊AB的長為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=x2+bx+c(c≠0)的圖象經(jīng)過點A(-2,m)(m<0),與y軸交于點B,與x軸交于C、D兩點(C在D的左側(cè)),AB//x軸,且AB:OB=2:3.
(1)求m的值;
(2)求二次函數(shù)的解析式;
(3)在線段BC上是否存在點P,使ΔPOC為等腰三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,在以AB的中點O為坐標(biāo)原點,AB所在直線為x軸建立的平面直角坐標(biāo)系中,將△ABC繞點B順時針旋轉(zhuǎn),使點A旋轉(zhuǎn)至y軸的正半軸上的點A′處,若AO=OB=2,則陰影部分面積為( )
A. πB. π﹣1C. +1D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用如圖1的二維碼可以進(jìn)行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學(xué)生的識別圖案,黑色小正方形表示1,白色小正方形表示0.將第一行數(shù)字從左到右依次記為,,,,那么可以轉(zhuǎn)換為該生所在班級序號,其序號為.如圖2第一行數(shù)字從左到右依次為0,1,0,1,序號為,表示該生為5班學(xué)生.表示6班學(xué)生的識別圖案是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,AB為⊙O的直徑,弦CD⊥AB于點E,在CD的延長線上取一點P,PG與⊙O相切于點G,連接AG交CD于點F.
(Ⅰ)如圖①,若∠A=20°,求∠GFP和∠AGP的大;
(Ⅱ)如圖②,若E為半徑OA的中點,DG∥AB,且OA=2,求PF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠DAB=45°,AB=4,點P為線段AB上一動點,過點P作PE⊥AB交直線AD于點E,將∠A沿PE折疊,點A落在F處,連接DF,CF,當(dāng)ΔCDF為直角三角形時,線段AP的長為__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com