【題目】完成推理填空:如圖,已知 AB∥CD,GH平分∠AGM,MN平分∠CMG,請(qǐng)說(shuō)明GH⊥MN的理由.
解:因?yàn)?/span> AB∥CD(已知),
所以∠AGF+ =180°( ),
因?yàn)?/span> GH 平分∠AGF,MN 平分∠CMG( ),
所以∠1= ∠AGF,∠2= ∠CMG( ),
得∠1+∠2=(∠AGF+∠CMG)= ,
所以 GH⊥MN( ).
【答案】∠CMG;兩直線平行,同旁?xún)?nèi)角互補(bǔ);已知;角平分線的定義;90°;垂直的定義.
【解析】
根據(jù)平行線的性質(zhì)(兩直線平行,同旁?xún)?nèi)角互補(bǔ))、以及角平分線的定義去轉(zhuǎn)化角度即可.
解:因?yàn)?/span> AB∥CD(已知),
所以∠AGF+ ∠CMG =180°( 兩直線平行,同旁?xún)?nèi)角互補(bǔ) ),
因?yàn)?/span> GH 平分∠AGF,MN 平分∠CMG( 已知 ),
所以∠1= ∠AGF,∠2= ∠CMG( 角平分線的定義 ),
得∠1+∠2=(∠AGF+∠CMG)= 90° ,
所以 GH⊥MN( 垂直的定義 ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)函數(shù)中,y的值隨著x值的增大而減小的是( )
A.y=2x
B.y=x+1
C.y= (x>0)
D.y=x2(x>0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD、CE分別是∠ABC、∠BCD的角平分線,則圖中的等腰三角形有( 。
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從全校1200名學(xué)生中隨機(jī)選取一部分學(xué)生進(jìn)行調(diào)查,調(diào)查情況:A:上網(wǎng)時(shí)間 小時(shí);B:1小時(shí)<上網(wǎng)時(shí)間 小時(shí);C:4小時(shí)<上網(wǎng)時(shí)間 小時(shí);D:上網(wǎng)時(shí)間>7小時(shí).統(tǒng)計(jì)結(jié)果制成了如圖統(tǒng)計(jì)圖:
(1)參加調(diào)查的學(xué)生有人;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)全;
(3)請(qǐng)估計(jì)全校上網(wǎng)不超過(guò)7小時(shí)的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,E、F是對(duì)角線AC上的兩點(diǎn),且AE=CF.
(1)寫(xiě)出圖中所有的全等三角形;
(2)求證:BE=DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示 A、B 兩地相距50千米,甲于某日下午1時(shí)騎自行車(chē)從A地出發(fā)駛往B地,乙也于同日下午騎摩托車(chē)按同路從A地出發(fā)駛往B地.如圖所示,圖中的折線PQR和線段MN分別表示甲、乙所行駛的路程S與該日下午時(shí)間t之間的關(guān)系.
(1)甲乙兩人中, 先出發(fā),先出發(fā) 小時(shí).
(2)甲乙兩人中, 先到達(dá)B地,先到 小時(shí).
(3)分別求出乙騎摩托車(chē)的速度和甲騎自行車(chē)在全程的平均速度.
(4)乙出發(fā)大約用多長(zhǎng)時(shí)間就追上甲?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形.BE交AC于F,AD交CE于H,
①求證:△BCE≌△ACD;
②求證:CF=CH;
③判斷△CFH的形狀并說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形ABCD中,AB=12cm,BC=6cm,點(diǎn)P沿AB邊從點(diǎn)A開(kāi)始向點(diǎn)B以2cm/秒的速度移動(dòng),點(diǎn)Q沿DA邊從點(diǎn)D開(kāi)始向點(diǎn)A以1cm/秒的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t(秒)表示運(yùn)動(dòng)時(shí)間(0≤t≤6),那么當(dāng)t為何值時(shí),△APQ與△ABD相似?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=mx2﹣6mx+5m與x軸交于A、B兩點(diǎn),以AB為直徑的⊙P經(jīng)過(guò)該拋物線的頂點(diǎn)C,直線l∥ x軸,交該拋物線于M、N兩點(diǎn),交⊙ P與E、F兩點(diǎn),若EF=2 ,則MN的長(zhǎng)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com