精英家教網 > 初中數學 > 題目詳情
(1)如圖1,已知矩形ABCD中,點E是BC上的一動點,過點E作EF⊥BD于點F,EG⊥AC于點G,CH⊥BD于點H,試證明CH=EF+EG;精英家教網
(2)若點E在BC的延長線上,如圖2,過點E作EF⊥BD于點F,EG⊥AC的延長線于點G,CH⊥BD于點H,則EF、EG、CH三者之間具有怎樣的數量關系,直接寫出你的猜想;
(3)如圖3,BD是正方形ABCD的對角線,L在BD上,且BL=BC,連接CL,點E是CL上任一點,EF⊥BD于點F,EG⊥BC于點G,猜想EF、EG、BD之間具有怎樣的數量關系,直接寫出你的猜想;
(4)觀察圖1、圖2、圖3的特性,請你根據這一特性構造一個圖形,使它仍然具有EF、EG、CH這樣的線段的關系,并滿足(1)或(2)的結論,寫出相關題設的條件和結論.
分析:(1)要證明CH=EF+EG,首先要想到能否把線段CH分成兩條線段而加以證明,就自然的想到添加輔助線,若作CE⊥NH于N,可得矩形EFHN,很明顯只需證明EG=CN,最后根據AAS可求證△EGC≌△CNE得出結論.
(2)過C點作CO⊥EF于O,可得矩形HCOF,因為HC=FO,所以只需證明EO=EG,最后根據AAS可求證△COE≌△CGE得出猜想.
(3)連接AC,過E作EG作EH⊥AC于H,交BD于O,可得矩形FOHE,很明顯只需證明EG=CH,最后根據AAS可求證△CHE≌△EGC得出猜想.
(4)點P是等腰三角形底邊所在直線上的任意一點,點P到兩腰的距離的和(或差)等于這個等腰三角形腰上的高,很顯然過C作CE⊥PF于E,可得矩形GCEF,而且AAS可求證△CEP≌△CNP,故CG=PF-PN.
解答:精英家教網(1)證明:過E點作EN⊥CH于N.
∵EF⊥BD,CH⊥BD,
∴四邊形EFHN是矩形.
∴EF=NH,FH∥EN.
∴∠DBC=∠NEC.
∵四邊形ABCD是矩形,
∴AC=BD,且互相平分
∴∠DBC=∠ACB
∴∠NEC=∠ACB
∵EG⊥AC,EN⊥CH,
∴∠EGC=∠CNE=90°,
又∵EC=CE,
∴△EGC≌△CNE.
∴EG=CN
∴CH=CN+NH=EG+EF;

(2)解:猜想CH=EF-EG;

(3)解:EF+EG=
1
2
BD;

(4)解:點P是等腰三角形底邊所在直線上的任意一點,點P到兩腰的距離的和(或差)等于這個等腰三角形腰上的高.如圖①,有CG=PF-PN.
精英家教網
點評:此題主要考查矩形的性質和判定,解答此題的關鍵是作出輔助線,構造矩形和三角形全等來進行證明.
練習冊系列答案
相關習題

科目:初中數學 來源:2011-2012學年江蘇省無錫市九年級中考模擬(二)數學試卷(解析版) 題型:選擇題

如圖,已知扇形的圓心角為(定值),半徑為(定值),分別在圖一、二中

作扇形的內接矩形,若按圖一作出的矩形面積的最大值為,則按圖二作出的矩

形面積的最大值為               (    )

A.        B.        C.     D.

 

查看答案和解析>>

同步練習冊答案