精英家教網 > 初中數學 > 題目詳情

如圖,已知二次函數的圖象經過點A(6,0)、B(﹣2,0)和點C(0,﹣8).

(1)求該二次函數的解析式;

(2)設該二次函數圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為     ;

(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.

①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,

請求出此時t的值;若不存在,請說明理由;

②請求出S關于t的函數關系式,并寫出自變量t的取值范圍;

③設S0是②中函數S的最大值,直接寫出S0的值.

解:(1)設二次函數的解析式為y=a(x+2)(x﹣6)

∵圖象過點(0,﹣8)

∴a=

∴二次函數的解析式為y=x2x﹣8;--------------------(2分)

(2)∵y=x2x﹣8=(x2﹣4x+4﹣4)﹣8=(x﹣2)2

∴點M的坐標為(2,﹣

∵點C的坐標為(0,﹣8),

∴點C關于x軸對稱的點C′的坐標為(0,8)

∴直線C′M的解析式為:y=﹣x+8

令y=0

得﹣x+8=0

解得:x=

∴點K的坐標為(,0);-------------------(2分)

(3)①不存在PQ∥OC,

若PQ∥OC,則點P,Q分別在線段OA,CA上,

此時,1<t<2

∵PQ∥OC,

∴△APQ∽△AOC

∵AP=6﹣3t

AQ=18﹣8t,

∴t=

∵t=>2不滿足1<t<2;

∴不存在PQ∥OC;-----------------------(3分)

③當0≤t≤1時,S=12t2,函數的最大值是12;

當1<t≤2時,S=﹣+,函數的最大值是

當2<t<,S=QP•OF=﹣+,函數的最大值為;-------------(3分)

∴S0的值為-----------------(2分)

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知二次函數的圖象經過點A(3,3)、B(4,0)和原點O.P為二次函數圖象上精英家教網的一個動點,過點P作x軸的垂線,垂足為D(m,0),并與直線OA交于點C.
(1)求出二次函數的解析式;
(2)當點P在直線OA的上方時,求線段PC的最大值;
(3)當m>0時,探索是否存在點P,使得△PCO為等腰三角形,如果存在,求出P的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•呼和浩特)如圖,已知二次函數的圖象經過點A(6,0)、B(-2,0)和點C(0,-8).
(1)求該二次函數的解析式;
(2)設該二次函數圖象的頂點為M,若點K為x軸上的動點,當△KCM的周長最小時,點K的坐標為
6
7
,0)
6
7
,0)

(3)連接AC,有兩動點P、Q同時從點O出發(fā),其中點P以每秒3個單位長度的速度沿折線OAC按O→A→C的路線運動,點Q以每秒8個單位長度的速度沿折線OCA按O→C→A的路線運動,當P、Q兩點相遇時,它們都停止運動,設P、Q同時從點O出發(fā)t秒時,△OPQ的面積為S.
①請問P、Q兩點在運動過程中,是否存在PQ∥OC?若存在,請求出此時t的值;若不存在,請說明理由;
②請求出S關于t的函數關系式,并寫出自變量t的取值范圍;
③設S0是②中函數S的最大值,直接寫出S0的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•常德)如圖,已知二次函數的圖象過點A(0,-3),B(
3
,
3
),對稱軸為直線x=-
1
2
,點P是拋物線上的一動點,過點P分別作PM⊥x軸于點M,PN⊥y軸于點N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數的解析式;
(2)求證:以C、D、E、F為頂點的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點P,使四邊形CDEF為矩形?若存在,請求出所有符合條件的P點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知二次函數的圖象與x軸交于A(2,0)、B(6,0)兩點,與y軸交于點D(0,4).
(1)求該二次函數的表達式;
(2)寫出該拋物線的頂點C的坐標;
(3)求四邊形ACBD的面積?

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知二次函數的圖象(0≤x≤3.4),關于該函數在所給自變量的取值范圍內,下列說法正確的是(  )

查看答案和解析>>

同步練習冊答案