(2013•常德)如圖,已知二次函數(shù)的圖象過(guò)點(diǎn)A(0,-3),B(
3
,
3
),對(duì)稱軸為直線x=-
1
2
,點(diǎn)P是拋物線上的一動(dòng)點(diǎn),過(guò)點(diǎn)P分別作PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,在四邊形PMON上分別截取PC=
1
3
MP,MD=
1
3
OM,OE=
1
3
ON,NF=
1
3
NP.
(1)求此二次函數(shù)的解析式;
(2)求證:以C、D、E、F為頂點(diǎn)的四邊形CDEF是平行四邊形;
(3)在拋物線上是否存在這樣的點(diǎn)P,使四邊形CDEF為矩形?若存在,請(qǐng)求出所有符合條件的P點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)利用頂點(diǎn)式和待定系數(shù)法求出拋物線的解析式;
(2)證明△PCF≌△OED,得CF=DE;證明△CDM≌△FEN,得CD=EF.這樣四邊形CDEF兩組對(duì)邊分別對(duì)應(yīng)相等,所以四邊形CDEF是平行四邊形;
(3)根據(jù)已知條件,利用相似三角形△PCF∽△MDC,可以證明矩形PMON是正方形.這樣點(diǎn)P就是拋物線y=x2+x-3與坐標(biāo)象限角平分線y=x或y=-x的交點(diǎn),聯(lián)立解析式解方程組,分別求出點(diǎn)P的坐標(biāo).符合題意的點(diǎn)P有四個(gè),在四個(gè)坐標(biāo)象限內(nèi)各一個(gè).
解答:(1)解:設(shè)拋物線的解析式為:y=a(x+
1
2
2+k,
∵點(diǎn)A(0,-3),B(
3
3
)在拋物線上,
1
4
a+k=-3
a(
3
+
1
2
)2+k=
3
,
解得:a=1,k=-
13
4

∴拋物線的解析式為:y=(x+
1
2
2-
13
4
=x2+x-3.

(2)證明:如右圖,連接CD、DE、EF、FC.
∵PM⊥x軸于點(diǎn)M,PN⊥y軸于點(diǎn)N,
∴四邊形PMON為矩形,
∴PM=ON,PN=OM.
∵PC=
1
3
MP,OE=
1
3
ON,
∴PC=OE;
∵M(jìn)D=
1
3
OM,NF=
1
3
NP,
∴MD=NF,
∴PF=OD.
在△PCF與△OED中,
PC=OE
∠FPC=∠DOE=90°
PF=OD

∴△PCF≌△OED(SAS),
∴CF=DE.
同理可證:△CDM≌△FEN,
∴CD=EF.
∵CF=DE,CD=EF,
∴四邊形CDEF是平行四邊形.

(3)解:假設(shè)存在這樣的點(diǎn)P,使四邊形CDEF為矩形.
設(shè)矩形PMON的邊長(zhǎng)PM=ON=m,PN=OM=n,則PC=
1
3
m,MC=
2
3
m,MD=
1
3
n,PF=
2
3
n.
若四邊形CDEF為矩形,則∠DCF=90°,易證△PCF∽△MDC,
PC
MD
=
PF
MC
,即
1
3
m
1
3
n
=
2
3
n
2
3
m
,化簡(jiǎn)得:m2=n2,
∴m=n,即矩形PMON為正方形.
∴點(diǎn)P為拋物線y=x2+x-3與坐標(biāo)象限角平分線y=x或y=-x的交點(diǎn).
聯(lián)立
y=x2+x-3
y=x
,
解得
x1=
3
y1=
3
,
x2=-
3
y2=-
3
,
∴P1
3
,
3
),P2(-
3
,-
3
);
聯(lián)立
y=x2+x-3
y=-x
,
解得
x1=-3
y1=3
x2=1
y2=-1
,
∴P3(-3,3),P4(1,-1).
∴拋物線上存在點(diǎn)P,使四邊形CDEF為矩形.這樣的點(diǎn)有四個(gè),在四個(gè)坐標(biāo)象限內(nèi)各一個(gè),其坐標(biāo)分別為:P1
3
,
3
),P2(-
3
,-
3
),P3(-3,3),P4(1,-1).
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,考查了二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法、全等三角形、相似三角形、解方程、矩形、正方形等知識(shí)點(diǎn),所涉及的考點(diǎn)較多,但難度均勻,是一道好題.第(2)問(wèn)的要點(diǎn)是全等三角形的證明,第(3)問(wèn)的要點(diǎn)是判定四邊形PMON必須是正方形,然后列方程組求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•常德)如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線,∠C=45°,sinB=
13
,AD=1.
(1)求BC的長(zhǎng);
(2)求tan∠DAE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•常德)如圖,將長(zhǎng)方形紙片ABCD折疊,使邊DC落在對(duì)角線AC上,折痕為CE,且D點(diǎn)落在對(duì)角線D′處.若AB=3,AD=4,則ED的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•常德)如圖,已知⊙O是△ABC的外接圓,若∠BOC=100°,則∠BAC=
50°
50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•常德)如圖,已知⊙O是等腰直角三角形ADE的外接圓,∠ADE=90°,延長(zhǎng)ED到C使DC=AD,以AD,DC為鄰邊作正方形ABCD,連接AC,連接BE交AC于點(diǎn)H.求證:
(1)AC是⊙O的切線.
(2)HC=2AH.

查看答案和解析>>

同步練習(xí)冊(cè)答案