【題目】女本柔弱,為母則剛,說的是母親對子女無私的愛,母愛偉大,值此母親節(jié)來臨之際,某花店推出一款康乃馨花束,經(jīng)過近幾年的市場調(diào)研發(fā)現(xiàn),該花束在母親節(jié)的銷售量(束)與銷售單價(元)之間滿足如圖所示的一次函數(shù)關(guān)系,已知該花束的成本是每束100元.
(1)求出關(guān)于的函數(shù)關(guān)系式(不要求寫的取值范圍);
(2)設(shè)該花束在母親節(jié)盈利為元,寫出關(guān)于的函數(shù)關(guān)系式:并求出當(dāng)售價定為多少元時,利潤最大?最大值是多少?
(3)花店開拓新的進貨渠道,以降低成本.預(yù)計在今后的銷售中,母親節(jié)期間該花束的銷售量與銷售單價仍存在(1)中的關(guān)系.若想實現(xiàn)銷售單價為200元,且銷售利潤不低于9900元的銷售目標(biāo),該花束每束的成本應(yīng)不超過多少元.
【答案】(1);(2),240,9800;(3)90.
【解析】
(1)根據(jù)題目中所給的圖象,確定一次函數(shù)圖象經(jīng)過點,,再利用待定系數(shù)法求出關(guān)于的函數(shù)關(guān)系式即可;
(2)根據(jù)“總利潤=單件的利潤×銷售量”列出W與x的二次函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)求解即可;
(3)根據(jù)題意可以列出相應(yīng)的不等式,從而可以解得該花束每束的成本.
解:(1)設(shè)一次函數(shù)關(guān)系式為,
由題圖知該函數(shù)圖象過點,,
則,
解得,
∴關(guān)于的函數(shù)關(guān)系式為
(2)由題知,
∴當(dāng)時,有最大值,最大值為9800元;
(3)設(shè)該花束每束的成本為元,
由題意知,
解得.
答:該花束每束的成本應(yīng)不超過90元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC的周長為14,∠AOC=60°,以O為原點,OC所在直線為x軸建立直角坐標(biāo)系,函數(shù)y(x>0)的圖象經(jīng)過OABC的頂點A和BC的中點M,則k的值為( 。
A.2B.4C.6D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著傳統(tǒng)的石油、煤等自然資源逐漸消耗殆盡,風(fēng)力、核能、水電等一批新能源被廣泛使用.現(xiàn)在山頂?shù)囊粔K平地上建有一座風(fēng)車,山的斜坡的坡度,長是100米,在山坡的坡底處測得風(fēng)車頂端的仰角為,在山坡的坡頂處測得風(fēng)車頂端的仰角為,請你計算風(fēng)車的高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=(x﹣m)(x﹣m﹣4)(m為常數(shù)).
(1)求證:不論m為何值,該函數(shù)的圖象與x軸總有兩個不同的公共點;
(2)求證:不論m為何值,該函數(shù)的圖象的頂點縱坐標(biāo)不變;
(3)若該函數(shù)的圖象與x軸交點為A、B,與y軸交點為C,當(dāng)﹣3≤m≤﹣1時,△ABC面積S的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,內(nèi)接于⊙O,過C作射線CP與BA的延長線交于點P,.
(1)求證:CP是⊙O的切線;
(2)若,,求AB的長;
(3)如圖2,D是BC的中點,PD與AC交于點E,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,點A在反比例函數(shù)y=﹣的圖象上,點B、C都在反比例函數(shù)y=﹣的圖象上,AB∥x軸,則點A的坐標(biāo)為( )
A.(﹣,2)B.(﹣,)C.(﹣,)D.(﹣2,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,CD是AB邊上的高,若.
(1)求CD的長.
(2)動點P在邊AB上從點A出發(fā)向點B運動,速度為1個單位/秒;動點Q在邊AC上從點A出發(fā)向點C運動,速度為v個單位秒,設(shè)運動的時間為,當(dāng)點Q到點C時,兩個點都停止運動.
①若當(dāng)時,,求t的值.
②若在運動過程中存在某一時刻,使成立,求v關(guān)于t的函數(shù)表達式,并寫出自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍三種顏色的小球(除顏色外其余都相同),其中有紅球2個,藍球1個,黃球若干個,現(xiàn)從中任意摸出一個球是紅球的概率為.
(1)求口袋中黃球的個數(shù);
(2)甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用“樹狀圖法”或“列表法”,
求兩次摸 出都是紅球的概率;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com