【題目】如圖,的直徑,的弦,且交于點,連接,若,則的度數(shù)是(

A.B.C.D.

【答案】C

【解析】

連接OEFB.在△EFO中,由等邊對等角得到∠FEO的度數(shù),證明△EFO≌△EBO,得到∠BEO=FEO,從而得到∠FEB的度數(shù).在△EFB中,根據(jù)等邊對等角和三角形內角和定理得出∠EFB的度數(shù),進而得到∠OFB的度數(shù).在△OFB中,根據(jù)等邊對等角得出∠OBF的度數(shù),根據(jù)圓周角定理即可得到∠AOF的度數(shù).

連接OE、FB

OF=OE,∴∠FEO=EFO=35°.

在△EFO和△EBO中,∵EF=BE,OE=OE,OF=OB,

∴△EFO≌△EBO,∴∠BEO=FEO=35°,∴∠FEB=70°.

EF=EB,∴∠EFB=EBF=180°-70°)÷2=55°,∴∠OFB=EFB-EFO=55° -35°=20°.

OF=OB,∴∠OBF=OFB=20°,∴∠AOF=2OBF=40°.

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經過A(4,0),B(1,0),C(0,-2)三點.

(1)求出拋物線的解析式;

(2)P是拋物線上一動點,過PPMx軸,垂足為M,是否存在P點,使得以A,PM為頂點的三角形與△OAC相似?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】女本柔弱,為母則剛,說的是母親對子女無私的愛,母愛偉大,值此母親節(jié)來臨之際,某花店推出一款康乃馨花束,經過近幾年的市場調研發(fā)現(xiàn),該花束在母親節(jié)的銷售量(束)與銷售單價(元)之間滿足如圖所示的一次函數(shù)關系,已知該花束的成本是每束100元.

1)求出關于的函數(shù)關系式(不要求寫的取值范圍);

2)設該花束在母親節(jié)盈利為元,寫出關于的函數(shù)關系式:并求出當售價定為多少元時,利潤最大?最大值是多少?

3)花店開拓新的進貨渠道,以降低成本.預計在今后的銷售中,母親節(jié)期間該花束的銷售量與銷售單價仍存在(1)中的關系.若想實現(xiàn)銷售單價為200元,且銷售利潤不低于9900元的銷售目標,該花束每束的成本應不超過多少元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著生活水平的日益提高,人們越來越喜歡過節(jié),節(jié)日的儀式感日漸濃烈.某校舉行了女神節(jié)暖心特別行動,從中隨機調査了部分同學的暖心行動,并將其分為A,B,C,D四種類型(分別對應送服務、送鮮花、送紅包、送話語).現(xiàn)根據(jù)調查的數(shù)據(jù)繪制成如下的條形統(tǒng)計圖和扇形統(tǒng)計圖.

請根據(jù)以上不完整的統(tǒng)計圖提供的信息,解答下列問題:

1)該校共抽查了多少名同學的暖心行動?

2)補全條形統(tǒng)計圖和扇形統(tǒng)計圖;

3)若該校共有2400名同學,請估計該校進行送鮮花行動的同學約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場要經營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10

1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關系式;

2)求銷售單價為多少元時,該文具每天的銷售利潤最大;

3)商場的營銷部結合上述情況,提出了A、B兩種營銷方案

方案A:該文具的銷售單價高于進價且不超過30元;

方案B:每天銷售量不少于10件,且每件文具的利潤至少為25

請比較哪種方案的最大利潤更高,并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

觀察猜想

如圖1,有公共直角頂點的兩個不全等的等腰直角三角尺疊放在一起,點上,點.

1)在圖1中,你發(fā)現(xiàn)線段,的數(shù)量關系是___________,直線,的位置關系是________.

操作發(fā)現(xiàn)

2)將圖1中的繞點逆時針旋轉一個銳角得到圖2,這時(1)中的兩個結論是否成立?作出判斷并說明理由;

拓廣探索

3)如圖3,若只把有公共直角頂點的兩個不全等的等腰直角三角尺改為有公共頂角為(銳角)的兩個不全等等腰三角形,繞點逆時針旋轉任意一個銳角,這時(1)中的兩個結論仍然成立嗎?作出判斷,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關系如圖所示.

1)求甲、乙兩車行駛的速度V、V.

2)求m的值.

3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐:問題情境:在一次綜合實踐活動課上,同學們以菱形為對象,研究菱形旋轉中的問題:已知,在菱形中,為對角線,,,將菱形繞頂點順時針旋轉,旋轉角為(單位.旋轉后的菱形為.在旋轉探究活動中提出下列問題,請你幫他們解決.

1)如圖1,若旋轉角,相交于點,相交于點.請說明線段的數(shù)量關系;

2)如圖2,連接,菱形旋轉的過程中,當互相垂直時,的長為______

3)如圖3,若旋轉角為時,分別連接,,過點分別作,連接,菱形旋轉的過程中,發(fā)現(xiàn)在中存在長度不變的線段,請求出長度;

操作探究:(4)如圖4,在(3)的條件下,請判斷以,,三條線段長度為邊的三角形是什么特殊三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將△ABC繞點C順時針旋轉90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

同步練習冊答案