【題目】如圖,△ABC中,∠BAC=90°,∠B=30°,BC邊上有一點(diǎn)P(不與點(diǎn)B,C重合),I為△APC的內(nèi)心,若∠AIC的取值范圍為m°<∠AIC<n°,則m+n=_____.
【答案】255.
【解析】
I為△APC的內(nèi)心,即I為△APC角平分線的交點(diǎn),利用三角形內(nèi)角和等于180°及角平分線定義,即可表示出∠AIC,從而得到m,n的值即可.
解:設(shè)∠BAP=α,則∠APC=α+30°,
∵∠BAC=90°,
∴∠PCA=60°,∠PAC=90°﹣α,
∵I為△APC的內(nèi)心,
∴AI、CI分別平分∠PAC,∠PCA,
∴∠IAC=∠PAC,∠ICA=∠PCA,
∴∠AIC=180°﹣(∠IAC+∠ICA)
=180°﹣(∠PAC+∠PCA)
=180°﹣(90°﹣α+60°)
=α+105°
∵0<α<90°,
∴105°<α+105°<150°,即105°<∠AIC<150°,
∴m=105,n=150.
∴m+n=255,
故答案為:255.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于 A(﹣1,0),B(4,0),C
(0,﹣4)三點(diǎn),點(diǎn) P 是直線 BC 下方拋物線上一動(dòng)點(diǎn).
(1) 求這個(gè)二次函數(shù)的解析式;
(2) 是否存在點(diǎn) P,使△POC 是以 OC 為底邊的等腰三角形?若存在,求出 P 點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由;
(3) 在拋物線上是否存在點(diǎn) D(與點(diǎn) A 不重合)使得 S△DBC=S△ABC,若存在,求出點(diǎn) D的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列長(zhǎng)度的三條線段能組成鈍角三角形的是( )
A. 3,4,4 B. 3,4,5 C. 3,4,6 D. 3,4,7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,點(diǎn)是內(nèi)的定點(diǎn),且,若點(diǎn)、分別是射線,上異于點(diǎn)的動(dòng)點(diǎn),則周長(zhǎng)的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標(biāo)系xOy中,如果將點(diǎn)P繞點(diǎn)T(0,t)(t>0)旋轉(zhuǎn)180°得到點(diǎn)Q,那么稱線段QP為“拓展帶”,點(diǎn)Q為點(diǎn)P的“拓展點(diǎn)”.
(1)當(dāng)t=3時(shí),點(diǎn)(0,0)的“拓展點(diǎn)”坐標(biāo)為 ,點(diǎn)(﹣1,1)的“拓展點(diǎn)”坐標(biāo)為 ;
(2)如果 t>1,當(dāng)點(diǎn)M(2,1)的“拓展點(diǎn)”N在函數(shù)y=﹣的圖象上時(shí),求t的值;
(3)當(dāng)t=1時(shí),點(diǎn)Q為點(diǎn)P(2,0)的“拓展點(diǎn)”,如果拋物線 y=(x﹣m)2﹣1與“拓展帶”PQ有交點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國(guó)慶假期期間,某單位8名領(lǐng)導(dǎo)和320名員工集體外出進(jìn)行素質(zhì)拓展活動(dòng),準(zhǔn)備租用45座大車或30座小車.若租用2輛大車3輛小車共需租車費(fèi)1700元;若租用3輛大車2輛小車共需租車費(fèi)1800元
(1)求大、小車每輛的租車費(fèi)各是多少元?
(2)若每輛車上至少要有一名領(lǐng)導(dǎo),每個(gè)人均有座位,且總租車費(fèi)用不超過3100元,求最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等腰中,,直線過點(diǎn)且.是上一點(diǎn),過作垂足為,過作垂足為,已知.
(1)如圖①,在直線上有一點(diǎn),連接,且,求證:;
(2)如圖②,將沿方向平移,分別交于,兩點(diǎn),當(dāng)時(shí),求的面積;
(3)如圖③,設(shè)直線從點(diǎn)出發(fā)沿方向平移的速度為每秒1個(gè)單位,與交于點(diǎn),同時(shí)有一動(dòng)點(diǎn)從點(diǎn)出發(fā)以相同的速度向點(diǎn)運(yùn)動(dòng),過作交于,設(shè)運(yùn)動(dòng)時(shí)間為,當(dāng)到達(dá)點(diǎn)時(shí)所有運(yùn)動(dòng)停止,問是否存在以、、為頂點(diǎn)的三角形是等腰三角形?若存在,直接寫出的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAC=30°,點(diǎn) D 為∠BAC內(nèi)一點(diǎn),點(diǎn) E,F 分別是AB,AC上的動(dòng)點(diǎn).若AD=9,則△DEF周長(zhǎng)的最小值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代數(shù)學(xué)的許多發(fā)現(xiàn)都曾位居世界前列,如楊輝三角就是一例.如圖,這個(gè)三角形的構(gòu)造法則:兩腰上的數(shù)都是1,其余每個(gè)數(shù)均為其上方左右兩數(shù)之和,它給出了(a+b)n(n為正整數(shù))的展開式(按a的次數(shù)降冪排列)的系數(shù)規(guī)律例如,在三角形中第一行的三個(gè)數(shù)1,2,1,恰好對(duì)應(yīng)(a+b)2=a2+2ab+b2展開式中的系數(shù);第四行的四個(gè)數(shù)1,3,3,1,恰好對(duì)應(yīng)著(a+b)3=a3+3ab+3ab2+b3展開式中的系數(shù).結(jié)合對(duì)楊輝三角的理解完成以下問題
(1)(a+b)2展開式a2+2ab+b2中每一項(xiàng)的次數(shù)都是 次;
(a+b)3展開式a3+3a2b+3ab2+b3中每一項(xiàng)的次數(shù)都是 次;
那么(a+b)n展開式中每一項(xiàng)的次數(shù)都是 次.
(2)寫出(a+1)4的展開式 .
(3)拓展應(yīng)用:計(jì)算(x+1)5+(x﹣1)6+(x+1)7的結(jié)果中,x5項(xiàng)的系數(shù)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com