【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為(
A.
B.2
C.
D.

【答案】B
【解析】解:∵∠ABC=90°, ∴∠ABP+∠PBC=90°,
∵∠PAB=∠PBC,
∴∠BAP+∠ABP=90°,
∴∠APB=90°,
∴OP=OA=OB(直角三角形斜邊中線等于斜邊一半),
∴點P在以AB為直徑的⊙O上,連接OC交⊙O于點P,此時PC最小,
在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,
∴OC= =5,
∴PC=OC﹣OP=5﹣3=2.
∴PC最小值為2.
故選B.

首先證明點P在以AB為直徑的⊙O上,連接OC與⊙O交于點P,此時PC最小,利用勾股定理求出OC即可解決問題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知矩形OABC的頂點A在x軸上,OA=4,OC=3,點D為BC邊上一點,以AD為一邊在與點B的同側(cè)作正方形ADEF,連接OE.當點D在邊BC上運動時,OE的長度的最小值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,CE垂直對角線AC于點C,AB的延長線交CE于點E.
(1)求證:CD=BE;
(2)如果∠E=60°,CE=m,請寫出求菱形ABCD面積的思路.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖①②,試研究其中∠1、2與∠3、4之間的數(shù)量關系;

(2)如果我們把∠1、2稱為四邊形的外角,那么請你用文字描述上述的關系式;

(3)用你發(fā)現(xiàn)的結(jié)論解決下列問題:

如圖,AEDE分別是四邊形ABCD的外角∠NAD、MDA的平分線,B+C=240°,求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC的底邊BC=10cm,當BC邊上的高線AD從小到大變化時,ABC的面積也隨之變化.

(1)在這個變化過程中,自變量和因變量各是什么?

(2)ABC的面積S(cm2)與高線h(cm)之間的關系式是什么?

(3)用表格表示當h4cm變到10cm時(每次增加1cm),S的相應值;

(4)當h每增加1cm時,S如何變化?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2018120日,山西迎來了復興號列車,與和諧號相比,復興號列車時速更快,安全性更好.已知太原南﹣北京西全程大約500千米,復興號”G92次列車平均每小時比某列和諧號列車多行駛40千米,其行駛時間是該列和諧號列車行駛時間的(兩列車中途停留時間均除外).經(jīng)查詢,復興號”G92次列車從太原南到北京西,中途只有石家莊一站,停留10分鐘.求乘坐復興號”G92次列車從太原南到北京西需要多長時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△BCE中,點A是邊BE上一點,以AB為直徑的⊙O與CE相切于點D,AD∥OC,點F為OC與⊙O的交點,連接AF.
(1)求證:CB是⊙O的切線;
(2)若∠ECB=60°,AB=6,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一單桿高2.2m,兩立柱之間的距離為1.6m,將一根繩子的兩端栓于立柱與鐵杠結(jié)合處,繩子自然下垂呈拋物線狀.
(1)一身高0.7m的小孩站在離立柱0.4m處,其頭部剛好觸上繩子,求繩子最低點到地面的距離;
(2)為供孩子們打秋千,把繩子剪斷后,中間系上一塊長為0.4米的木板,除掉系木板用去的繩子后,兩邊的繩子正好各為2米,木板與地面平行,求這時木板到地面的距離.(供選用數(shù)據(jù): ≈1.8, ≈1.9, ≈2.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰ABC中,∠A=36°,ABC=ACB,1=2,3=4,BDCE交于點O,則圖中等腰三角形有( 。

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

同步練習冊答案