【題目】如圖,某數(shù)學(xué)興趣小組為測(cè)量一棵古樹BH和教學(xué)樓CG的高,先在A處用高1.5米的測(cè)角儀測(cè)得古樹頂端H的仰角∠HDE為45°,此時(shí)教學(xué)樓頂端G恰好在視線DH上,再向前走7米到達(dá)B處,又測(cè)得教學(xué)樓頂端G的仰角∠GEF為60°,點(diǎn)A、B、C三點(diǎn)在同一水平線上.

(1)計(jì)算古樹BH的高;

(2)計(jì)算教學(xué)樓CG的高.(參考數(shù)據(jù):≈14,≈1.7)

【答案】(1)BH =8.5;(2)CG= 18.0米.

【解析】

此題涉及的知識(shí)點(diǎn)是直角三角形的性質(zhì),矩形的性質(zhì),相似三角形的性質(zhì),正切值得計(jì)算的綜合應(yīng)用,難度偏大,解題時(shí)先由直角三角形的性質(zhì)求出邊的長(zhǎng)度,再作輔助線構(gòu)建條件,通過設(shè)未知數(shù)列出正切值得方程,解出未知數(shù),從而根據(jù)對(duì)應(yīng)關(guān)系求得解。

(1)由題意:四邊形ABED是矩形,可得DE=AB=7米.

Rt△DEH中,∵∠EDH=45°,

∴HE=DE=7,

∴BH=EH+BE=8.5米.

(2)作HJ⊥CGG.則△HJG是等腰三角形,四邊形BCJH是矩形,設(shè)HJ=GJ=BC=x.

中,,

,

,

米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)傾斜角為 的斜坡,將一個(gè)小球從斜坡的坡腳 O 點(diǎn)處拋出,落在 A點(diǎn)處,小球的運(yùn)動(dòng)路線可以用拋物線來刻畫,已知 tan

1)求拋物線表達(dá)式及點(diǎn) A 的坐標(biāo).

2)求小球在運(yùn)動(dòng)過程中離斜坡坡面 OA 的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,淇淇一家駕車從A地出發(fā),沿著北偏東60°的方向行駛,到達(dá)B地后沿著南偏東50°的方向行駛來到C地,C地恰好位于A地正東方向上,則( 。

①B地在C地的北偏西50°方向上;

②A地在B地的北偏西30°方向上;

③cos∠BAC=;

④∠ACB=50°.其中錯(cuò)誤的是( 。

A. ①② B. ②④ C. ①③ D. ③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著北京申辦冬奧會(huì)的成功,愈來愈多的同學(xué)開始關(guān)注我國(guó)的冰雪體育項(xiàng)目. 小健從新聞中了解到:在2018年平昌冬奧會(huì)的短道速滑男子500米決賽中,中國(guó)選手武大靖以39秒584的成績(jī)打破世界紀(jì)錄,收獲中國(guó)男子短道速滑隊(duì)在冬奧會(huì)上的首枚金牌. 同年11月12日,武大靖又以39秒505的成績(jī)?cè)倨剖澜缂o(jì)錄. 于是小健對(duì)同學(xué)們說:“2022年北京冬奧會(huì)上武大靖再獲金牌的可能性大小是.”你認(rèn)為小健的說法_________(填“合理”或“不合理”),理由是__________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸相交于原點(diǎn)和點(diǎn),點(diǎn)在拋物線上.

1)求拋物線的表達(dá)式,并寫出它的對(duì)稱軸;

2)求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O內(nèi)切于RtABC,點(diǎn)P、點(diǎn)Q分別在直角邊BC、斜邊AB上,PQAB,且PQ與⊙O相切,若AC2PQ,則tanB的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程x2+(2k﹣1)x+k2=0的兩根a、b滿足a2﹣b2=0,雙曲線 (x>0)經(jīng)過RtOAB斜邊OB的中點(diǎn)D,與直角邊AB交于C(如圖),則SOBC為( 。

A. 3 B. C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

13x28x3=0;(2x2+3x1=0;(3x22x3=0;(4)(x+42=5x+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+c的圖象經(jīng)過A1,0)、B5,0)、C0,5)三點(diǎn).

1)求這個(gè)二次函數(shù)的解析式;

2)過點(diǎn)C的直線ykx+b與這個(gè)二次函數(shù)的圖象相交于點(diǎn)E4,m),請(qǐng)求出CBE的面積S的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案