【題目】把一張對邊互相平行的紙條,折成如圖所示,EF是折痕,若∠EFB=32°,則下列結論正確的有( )

(1)∠C′EF=32°;(2)∠AEC=148°;(3)∠BGE=64°;(4)∠BFD=116°.

A. 1個 B. 2個 C. 3個 D. 4個

【答案】D

【解析】

根據平行線的性質和折疊的性質判斷.

(1)因為ACBD,所以CEF=∠EFB,

因為EFB=32°,所以∠CEF=32°,則(1)正確;

(2)根據折疊的性質,∠CEC=2∠CEF=2×32°=64°,

所以AEC=180°-∠CEC=180°-64°=116°,則(2)錯誤;

(3)因為ACBD,所以CEC=∠AEG

所以AEG=64°,則(3)正確;

(4)根據折疊的性質得,∠EFD=∠EFD,

因為ACBD,所以CEF+∠EFD=180°,

所以EFD=180°-32°=148°.

所以BFD=∠EFD-∠EFB=148°-32°=116°,則(4)正確.

故選C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上A,B兩點對應的有理數(shù)分別為xA=﹣5xB6,動點P從點A出發(fā),以每秒1個單位的速度沿數(shù)軸在AB之間往返運動,同時動點Q從點B出發(fā),以每秒2個單位的速度沿數(shù)軸在BA之間往返運動.設運動時間為t秒.

(1)t2時,點P對應的有理數(shù)xP______,PQ______;

(2)0t11時,若原點O恰好是線段PQ的中點,求t的值;

(3)我們把數(shù)軸上的整數(shù)對應的點稱為“整點”,當PQ兩點第一次在整點處重合時,直接寫出此整點對應的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,P是BC上一點,E是AB上一點,PD平分∠APC,PE⊥PD,連接DE交AP于F,在以下判斷中,不正確的是( )

A.當P為BC中點,△APD是等邊三角形
B.當△ADE∽△BPE時,P為BC中點
C.當AE=2BE時,AP⊥DE
D.當△APD是等邊三角形時,BE+CD=DE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C為⊙O上的點,PC過O點,交⊙O于D點,PD=OD,若OB⊥AC于E點.
(1)判斷A是否是PB的中點,并說明理由;
(2)若⊙O半徑為8,試求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司生產的某種產品每件成本為40元,經市場調查整理出如下信息:
①該產品90天內日銷售量(m件)與時間(第x天)滿足一次函數(shù)關系,部分數(shù)據如下表:

時間(第x天)

1

3

6

10

日銷售量(m件)

198

194

188

180

②該產品90天內每天的銷售價格與時間(第x天)的關系如下表:

時間(第x天)

1≤x<50

50≤x≤90

銷售價格(元/件)

x+60

100


(1)求m關于x的一次函數(shù)表達式;
(2)設銷售該產品每天利潤為y元,請寫出y關于x的函數(shù)表達式,并求出在90天內該產品哪天的銷售利潤最大?最大利潤是多少?【提示:每天銷售利潤=日銷售量×(每件銷售價格﹣每件成本)】
(3)在該產品銷售的過程中,共有多少天銷售利潤不低于5400元,請直接寫出結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1為放置在水平桌面上的某創(chuàng)意可折疊臺燈的平面示意圖,將其抽象成圖2,量的∠DCB=60°,∠CDE=150°,燈桿CD的長為40cm,燈管DE的長為26cm,底座AB的厚度為2cm,不考慮其他因素,分別求出DE與水平卓,面(AB所在的直線)所成的夾角度數(shù)和臺燈的高(點E到桌面的距離).(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】截長補短法,是初中幾何題中一種添加輔助線的方法,也是把幾何題化難為易的一種策略.截長就是在長邊上截取一條線段與某一短邊相等,補短就是通過延長或旋轉等方式使兩條短邊拼合到一起,從而解決問題.

(1)如圖1,△ABC是等邊三角形,點D是邊BC下方一點,∠BDC=120°,探索線段DA、DB、DC之間的數(shù)量關系.

解題思路:延長DC到點E,使CE=BD,根據∠BAC+∠BDC=180°,可證∠ABD=∠ACE,易證△ABD≌△ACE,得出△ADE是等邊三角形,所以AD=DE,從而解決問題.

根據上述解題思路,三條線段DA、DB、DC之間的等量關系是;(直接寫出結果)

(2)如圖2,Rt△ABC中,∠BAC=90°,AB=AC.點D是邊BC下方一點,∠BDC=90°,探索三條線段DA、DB、DC之間的等量關系,并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩地之間的路程為2380米,甲、乙兩人分別從A、B兩地出發(fā),相向而行,已知甲先出發(fā)5分鐘后,乙才出發(fā),他們兩人在A、B之間的C地相遇,相遇后,甲立即返回A地,乙繼續(xù)向A地前行.甲到達A地時停止行走,乙到達A地時也停止行走,在整個行走過程中,甲、乙兩人均保持各自的速度勻速行走,甲、乙兩人相距的路程y(米)與甲出發(fā)的時間x(分鐘)之間的關系如圖所示,則乙到達A地時,甲與A地相距的路程是米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,長方形的頂點在坐標原點,頂點分別在軸,軸的正半軸上,為邊的中點,是邊上的一個動點,當的周長最小時,點的坐標為_________.

查看答案和解析>>

同步練習冊答案