【題目】如圖,RtABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CD翻折,使點A落在AB上的點E處;再將邊BC沿CF翻折,使點B落在CE的延長線上的點B處,兩條折痕與斜邊AB分別交于點D、F,則線段BF的長為( )

A. B. C. D.

【答案】B

【解析】首先根據(jù)折疊可得CD=AC=3,BC=4,∠ACE=∠DCE,∠BCF=∠B/CF,CE⊥AB,然后求得△BCF是等腰直角三角形,進而求得∠B/GD=90°,CE-EF=,ED=AE=

從而求得B/D=1,DF=,在Rt△B/DF中,由勾股定理即可求得B/F的長.

解:根據(jù)首先根據(jù)折疊可得CD=AC=3,B/C=B4,∠ACE=∠DCE,∠BCF=∠B/CF,CE⊥AB,

∴BD=4-3=1,∠DCE+∠B/CF=∠ACE+∠BCF,

∴∠ACB=90°,∴∠ECF=45°,

∴△ECF是等腰直角三角形,

∴EF=CE,∠EFC=45°,

∴∠BFC=∠B/FC=135°,

∴∠B/FD=90°,

∵S△ABC=AC×BC=AB×CE,

∴AC×BC=AB×CE,

∵根據(jù)勾股定理求得AB=5,

∴CE=,∴EF=,ED=AE==

∴DE=EF-ED=,

∴B/F==.

故答案為:

“點睛”此題主要考查了翻折變換,等腰三角形的判定和性質(zhì),勾股定理的應用等,根據(jù)折疊的性質(zhì)求得相等的角是解本題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為8,B是數(shù)軸上位于點A左側(cè)一點,且AB=22,動點P從A點出發(fā),以每秒5個單位長度的速度沿數(shù)軸向左勻速運動,設運動時間為t(t>0)秒.

(1)數(shù)軸上點B表示的數(shù)是  ;點P表示的數(shù)是  (用含t的代數(shù)式表示)

(2)動點Q從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā),問點P運動多少秒時追上點Q?

(3)若M為AP的中點,N為BP的中點,在點P運動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由,若不變,請你畫出圖形,并求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】﹣21÷﹣7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知(xy)21,(xy)249,x2y2的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某種植物的主干長出若干數(shù)目的支干,每個支干又長出相同數(shù)目的小分支,若小分支、支干和主干的總數(shù)目是73,則每個支干長出的小分支的數(shù)目為(  )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)兩條直線相交于一點有2組不同的對頂角;

(2)三條直線相交于一點有6組不同的對頂角;

(3)四條直線相交于一點有12組不同的對頂角;

(4)n條直線相交于同一點有___________組不同對頂角.(如圖所示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若三角形三邊長為整數(shù),周長為11,且有一邊長為4,則此三角形中最長的邊是( 。
A.7
B.6
C.5
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,完成下列推理過程.

已知:DEAOE,BOAO,CFBEDO.

證明:CFDO.

證明:∵DEAO,BOAO(已知)

∴∠DEA=∠BOA=90°(   )

DEBO(  )

∴∠EDODOF(   )

又∵∠CFBEDO(   )

∴∠DOFCFB(   )

CFDO(   )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式b2x3)+bx3)=_____

查看答案和解析>>

同步練習冊答案