有下列幾種說(shuō)法:①角平分線上的點(diǎn)到角兩邊的距離相等;②順次連結(jié)矩形四邊中點(diǎn)
得到的四邊形是菱形;③等腰梯形的底角相等;④平行四邊形是中心對(duì)稱圖形.其中正確
的有(   )
A.4個(gè) B.3個(gè) C.2個(gè)D.1個(gè)
B

試題分析:①正確,符合角平分線的性質(zhì);
②正確,連接AC、BD,在△ABD中,∵AH=HD,AE=EB,∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四邊形EFGH為菱形.符合等腰三角形的軸對(duì)稱性質(zhì);

③錯(cuò)誤,沒(méi)說(shuō)清是不是同一底上的角;
④正確,符合平行四邊形的中心對(duì)稱性質(zhì).故選B.
點(diǎn)評(píng):本題要求綜合了解中心對(duì)稱圖形與軸對(duì)稱圖形的概念,角平分線和等腰梯形的性質(zhì),難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在△ABC中,點(diǎn)P為BC邊中點(diǎn),直線a繞頂點(diǎn)A旋轉(zhuǎn),若B、P在直線a的異側(cè),BM^直線a于點(diǎn)M,CN^直線a于點(diǎn)N,連接PM、PN;
(1) 延長(zhǎng)MP交CN于點(diǎn)E(如圖2)。j求證:△BPM≌△CPE;k求證:PM=PN;
(2) 若直線a繞點(diǎn)A旋轉(zhuǎn)到圖3的位置時(shí),點(diǎn)B、P在直線a的同側(cè),其它條件不變。此時(shí)
PM=PN還成立嗎?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(3) 若直線a繞點(diǎn)A旋轉(zhuǎn)到與BC邊平行的位置時(shí),其它條件不變。請(qǐng)直接判斷四邊形MBCN
的形狀及此時(shí)PM=PN還成立嗎?不必說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

⑴在數(shù)軸上將用字母表示出來(lái)。

⑵如圖所示,平移,使得頂點(diǎn)平移到處,再把所得到的三角形以點(diǎn)為旋轉(zhuǎn)中心按逆時(shí)針?lè)较蛐D(zhuǎn),畫(huà)出平移和旋轉(zhuǎn)后得到的兩個(gè)圖形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列圖形是幾家電信公司的標(biāo)志,其中既是軸對(duì)稱圖形又是中心對(duì)稱圖形的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知,點(diǎn)都在格點(diǎn)上.
(1)求的長(zhǎng);
(2)若將向右平移2個(gè)單位得到,求點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo);
(3)在坐標(biāo)系中標(biāo)出點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的點(diǎn),并寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

四邊形是正方形,旋轉(zhuǎn)后與重合。

(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)角等于多少度?
(3)試判斷的形狀。(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在中,,,
(1) 將繞點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)得到  ;
(2) 連結(jié),判斷四邊形的形狀,并說(shuō)明理由;
(3) 四邊形的面積是_________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn)(-2,5)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是 _____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,將邊長(zhǎng)為4個(gè)單位的等邊△ABC沿邊BC向右平移2個(gè)單位得到△DEF,則四邊形ABFD的周長(zhǎng)為(     )
A.12  B.16 C.20  D.24

查看答案和解析>>

同步練習(xí)冊(cè)答案