【題目】(1)如圖1,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.填空:∠MON= ;
(2)如圖2,∠AOB=90°,∠BOC=x ,仍然分別作∠AOC、∠BOC的平分線OM、ON,能否求出∠MON的度數(shù)?若能,求出其值;若不能,說明理由.
(3)如圖3,若∠AOB=α,∠BOC=β(α、β均為銳角,且α>β),仍然分別作∠AOC、∠BOC的平分線OM、ON,能否求出∠MON的度數(shù).若能,求∠MON的度數(shù).
(4)從(1)、(2)、(3)的結(jié)果中,你發(fā)現(xiàn)了什么規(guī)律?
【答案】(1)45°;(2)能,;(3)能,;(4)
【解析】
(1)根據(jù)題意可知,∠AOC=120°,由OM平分∠AOC,ON平分∠BOC;推出∠MOC=∠AOC=60°,∠CON= ∠BOC=15°,由圖形可知,∠MON=∠MOC-∠CON,即可求出∠MON=45°;
(2)根據(jù)(1)的求解思路,先利用角平分線的定義表示出∠MOC與∠NOC的度數(shù),然后相減即可得到∠MON的度數(shù);
(3)用α、β表示∠MOC,∠NOC,根據(jù)∠MON=∠MOC-∠NOC得解.
(4)由(1)、(2)、(3)的結(jié)果中,∠MON的度數(shù)與∠BCO無關(guān),∠MON= .
(1)∵∠AOB=90°,∠BOC=30°,
∴∠AOC=∠AOB+∠BOC=90°+30°=120°,
∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=∠AOC=60°,∠CON= ∠BOC=15°,
∴∠MON=∠MOC-∠CON=60°-15°=45°;
(2)能.
∵∠AOB=90°,∠BOC=x,
∴∠AOC=90°+x,
∵OM、ON分別平分∠AOC,∠BOC,
∴∠MOC= ∠AOC= (90°+x°)=45°+ x,
∴∠CON= ∠BOC= x,
∴∠MON=∠MOC-∠CON=45°+ x- x=45°.
(3)∵∠AOB=α,∠BOC=β,
∴∠AOC=∠AOB+∠BOC=α+β,
∵OM平分∠AOC,
∴∠MOC= ∠AOC= (α+β),
∵ON平分∠BOC,
∴∠NOC= ∠BOC= ,
∴∠MON=∠MOC-∠NOC= (α+β)-=.
(4)規(guī)律:∠MON的度數(shù)與∠BCO無關(guān),∠MON=.理由如下:
∵∠AOB=α,∠BOC=β,
∴∠AOC=∠AOB+∠BOC=α+β,
∵OM平分∠AOC,
∴∠MOC=∠AOC=(α+β),
∵ON平分∠BOC,
∴∠NOC=∠BOC=,
∴∠MON=∠MOC-∠NOC=(α+β)-=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點在相互平行的三條直線l1,l2,l3上,且l1、l2之間的距離為2,l2、l3之間的距離為3,則AC的長是_________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:∠AOD=150°,OB,OM,ON是∠AOD內(nèi)的射線.
(1)如圖1,若OM平分∠AOB,ON平分∠BOD.當(dāng)射線OB繞點O在∠AOD內(nèi)旋轉(zhuǎn)時,
∠MON= °;
(2)OC也是∠AOD內(nèi)的射線,如圖2,若∠BOC=m°,OM平分∠AOC,ON平分∠BOD,
求∠MON的大。ㄓ煤m的式子表示);
(3)在(2)的條件下,若m=20,∠AOB=10°,當(dāng)∠BOC在∠AOD內(nèi)部繞O點以每秒2°的速度逆時針旋轉(zhuǎn)t秒,如圖3,若3∠AOM=2∠DON時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,回答提出的問題.
我們知道:一個數(shù)的絕對值可以表示成,它是一個非負(fù)數(shù),在數(shù)軸上,表示這個數(shù)在數(shù)軸上所對應(yīng)的點到原點的距離(距離,當(dāng)然不可能是負(fù)數(shù)),這正是絕對值的幾何意義,比如說表示2這個數(shù)在數(shù)軸上所對應(yīng)的點到原點的距離,它是2,所以說表示這個數(shù)在數(shù)軸上所對應(yīng)的點到原點的距離,它也是2,所以說,嚴(yán)格來說,在數(shù)軸上,一個數(shù)在數(shù)軸上所對應(yīng)的點到原點(原點對應(yīng)的數(shù)為0)的距離應(yīng)該表示為,但平時我們都寫成,原因你明白.
(1)若給定,要找這樣的x,請按照上面材料中的說法,解釋它的幾何意義并找出對應(yīng)的;
(2)實際上,對于數(shù)軸上任意兩個數(shù)之間的距離我們也可以表示為,反過來,這個絕對值的幾何意義就是:數(shù)軸上表示與這兩個數(shù)的點之間的距離,你能結(jié)合上面的敘述,解釋的幾何意義嗎?請按你的理解說明:呢,如果能解釋這個,你了不起;
(3)若,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋中裝有20個只有顏色不同的球,其中5個黃球,8個黑球,7個紅球.
(1)求從袋中摸出一個球是黃球的概率;
(2)現(xiàn)從袋中取出若干個黑球,攪勻后,使從袋中摸出一個黑球的概率是,求從袋中取出黑球的個數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小時,則∠AMN+∠ANM的度數(shù)為( )
A. 130°B. 120°C. 110°D. 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC各頂點的坐標(biāo)分別為A(-3,2),B(-4,-3),C(-1,-1),
(1)請你畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出△A1B1C1的各點坐標(biāo);
(2)在y軸上找一點P,使△APC的周長最短。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里裝有顏色不同的黑、白兩種球共40個,小穎做摸球試驗,她將盒子里面的球攪勻后從中隨機(jī)摸出一個球記下顏色,再把它放回盒子中,不斷重復(fù)上述過程,下表是“摸到白色球”的頻率折線統(tǒng)計圖.
(1)請估計:當(dāng)n足夠大時,摸到白球的頻率將會穩(wěn)定在 (精確到0.01),假如你摸一次,你摸到白球的概率為 ;
(2)試估算盒子里白、黑兩種顏色的球各有多少個?
(3)在(2)條件下如果要使摸到白球的概率為,需要往盒子里再放入多少個白球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識,回答下列問題:
(1)小明總共剪開了_______條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補(bǔ)全.
(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是880cm,求這個長方體紙盒的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com