【題目】如圖,二次函數(shù)的圖象開口向上,圖象經(jīng)過點,且與軸相交于負半軸

問:給出四個結論:;②;③;④.寫出其中正確結論的序號(答對得分,少選、錯選均不得分)

問:給出四個結論:①abc0;2a+b0;a+c=1;a1.寫出其中正確結論的序號.

【答案】(1)正確的序號為①④;(2)正確的序號為②③④.

【解析】

1)根據(jù)拋物線開口向上對①進行判斷;根據(jù)拋物線對稱軸x=-在y軸右側對②進行判斷;根據(jù)拋物線與y軸的交點在x軸下方對③進行判斷;根據(jù)x=1時,y=0對④進行判斷;

2有(1得到a>0,b<0c<0,則可對①進行判斷;根據(jù)0<-<1可對②進行判斷;把點(-1,2)和(1,0)代入解析式得ab+c=2,a+b+c=0,整理有a+c=1,則可對③進行判斷;根據(jù)a=1-c,c<0可對④進行判斷.

1①由拋物線的開口方向向上可推出a0正確;

②因為對稱軸在y軸右側對稱軸為x=0

又∵a0,b0,錯誤;

③由拋物線與y軸的交點在y軸的負半軸上,c0,錯誤;

④由圖象可知x=1y=0,a+b+c=0,正確

故(1)中,正確結論的序號是①④

2①∵a0,b0,c0abc0,錯誤

②由圖象可知對稱軸x=0且對稱軸x=1,2a+b0,正確;

③由圖象可知x=﹣1y=2,ab+c=2x=1y=0,a+b+c=0

ab+c=2a+b+c=0相加得2a+2c=2,解得a+c=1正確;

④∵a+c=1,移項得a=1c

又∵c0a1,正確

故(2)中,正確結論的序號是②③④

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點A、B、Cx軸上,點D、Ey軸上,OA=OD=2,OC=OE=4,B為線段OA的中點,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M,點P為線段FG上一個動點(與F、G不重合),PQy軸與拋物線交于點Q.

(1)求經(jīng)過B、E、C三點的拋物線的解析式;

(2)判斷△BDC的形狀,并給出證明;當P在什么位置時,以P、O、C為頂點的三角形是等腰三角形,并求出此時點P的坐標;

(3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我國古代數(shù)學著作《九章算術》中有這樣一個問題:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,適于岸齊,問水深、葭長各幾何?這道題的意思是說:有一個邊長為10尺的正方形水池,在水池的正中央長著一根蘆葦,蘆葦露出水面1尺,若將蘆葦拉到水池一邊的中點處,蘆葦?shù)捻敹饲『玫竭_池邊的水面,問水的深度與這根蘆葦?shù)拈L度分別是多少?若設水的深度為x尺,則可以得到方程_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=6,AC=10,BC邊上的中線AD=4,則ABC的面積為___________;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,已知AB=AC,∠BAC=90°,AH是△ABC的高,AH=4 cm,BC=8 cm,直線CM⊥BC,動點D從點C開始沿射線CB方向以每秒3厘米的速度運動,動點E也同時從點C開始在直線CM上以每秒1厘米的速度向遠離C點的方向運動,連接AD、AE,設運動時間為t(t>0)秒.

(1)請直接寫出CD、CE的長度(用含有t的代數(shù)式表示):CD=   cm,CE=   cm;

(2)當t為多少時,△ABD的面積為12 cm2?

(3)請利用備用圖探究,當t為多少時,△ABD≌△ACE?并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,、是雙曲線上的點,、兩點的橫坐標分別是、,線段的延長線交軸于點,若,則的值為(

A. 2 B. 3 C. 4 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=8cm,對角線AC、BD相交于點O,點E、F分別從B、C兩點同時出發(fā),以1cm/s的速度沿BC、CD運動,到點C、D時停止運動,設運動時間為t(s),△OEF的面積為S(cm2),則S(cm2)t(s)的函數(shù)關系可用圖象表示為( )

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在我國古代數(shù)學著作《九章算術》中記載了這樣一個問題:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?用現(xiàn)代語言表述為:如圖,AB為⊙O的直徑,弦CDAB于點E,AE = 1寸,CD = 10寸,求直徑AB的長.請你解答這個問題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】任意兩點關于它們所連線段的中點成中心對稱,在平面直角坐標系中,任意兩點P(x1,y1),Q (x2,y2)的對稱中心的坐標為,如圖.

1)在平面直角坐標系中,若點P1(0-1),P2(23)的對稱中心是點A,則點A的坐標為________

2)另取兩點,.有一電子青蛙從點P1處開始依次作關于點A,BC的循環(huán)對稱跳動,即第一次跳到點P1關于點A的對稱點P2處,接著跳到點P2關于點B的對稱點P3處,第三次再跳到點P3關于點C的對稱點P4處,第四次再跳到點P4關于點A的對稱點P5處,,則點的坐標為________

查看答案和解析>>

同步練習冊答案