【題目】有一張等腰三角形紙片,AB=AC=5,BC=3,小明將它沿虛線PQ剪開,得到AQP和四邊形BCPQ兩張紙片(如圖所示),且滿足BQP=B,則下列五個(gè)數(shù)據(jù),3,,2,中可以作為線段AQ長的有 個(gè).

【答案】3

【解析】

試題分析:作CDPQ,交AB于D,如圖所示:

CDB=BQP,AB=AC=5,∴∠B=ACB,∵∠BQP=B,∴∠B=ACB=CDB,CD=BC=3,BCD∽△BAC,,即,解得:BD=AD=AB﹣BD=,CDPQ,∴△APQ∽△ACD,,即,解得:AP=AQ,當(dāng)AQ=時(shí),AP=×=5,不合題意,舍去;

當(dāng)AQ=3時(shí),AP=×3=5,符合題意;

當(dāng)AQ=時(shí),點(diǎn)P與C重合,不合題意,舍去;

當(dāng)AQ=2時(shí),AP=×2=5,符合題意;

當(dāng)AQ=時(shí),AP=×=5,符合題意;

綜上所述:可以作為線段AQ長的有3個(gè);

故答案為:3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

1已知ab=-3,ab5,求多項(xiàng)式4a2b4ab24a4b的值;

2已知x2-3x-1=0,求代數(shù)式3-3 x2+9x的值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形OABC中,OA=3,AB=6,以O(shè)A,OC所在的直線為坐標(biāo)軸,建立如圖1的平面直角坐標(biāo)系.將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),得到矩形ODEF,當(dāng)點(diǎn)B在直線DE上時(shí),設(shè)直線DE和x軸交于點(diǎn)P,與y軸交于點(diǎn)Q.

(1)求證:△BCQ≌△ODQ;
(2)求點(diǎn)P的坐標(biāo);
(3)若將矩形OABC向右平移(圖2),得到矩形ABCG,設(shè)矩形ABCG與矩形ODEF重疊部分的面積為S,OG=x,請直接寫出x≤3時(shí),S與x之間的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】震驚世界的MH370失聯(lián)事件發(fā)生后第30天,中國“海巡01”輪在南印度洋海域搜索過程中,首次偵聽到疑是飛機(jī)黑匣子的脈沖信號,探測到的信號所在海域水深4500米左右,其中4500用科學(xué)記數(shù)法表示為(
A.4.5×102
B.4.5×103
C.45.0×102
D.0.45×104

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AE=CF,∠AFD=∠CEB,那么添加下列一個(gè)條件后,仍無法判定△ADF≌△CBE的是(
A.∠A=∠C
B.AD=CB
C.BE=DF
D.AD∥BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在2014年5月崇左市教育局舉行的“經(jīng)典詩朗誦”演講比賽中,有11名學(xué)生參加決賽,他們決賽的成績各不相同,其中的一名學(xué)生想知道自己能否進(jìn)入前6名,不僅要了解自己的成績,還要了解這11名學(xué)生成績的(
A.眾數(shù)
B.中位數(shù)
C.平均數(shù)
D.方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有五條線段,長度分別是2,4,6,8,10,從中任取三條能構(gòu)成三角形的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtABC中,B=90°,AC=20,AB=10,P是邊AC上一點(diǎn)(不包括端點(diǎn)A、C),過點(diǎn)P作PEBC于點(diǎn)E,過點(diǎn)E作EFAC,交AB于點(diǎn)F.設(shè)PC=x,PE=y.

(1)求y與x的函數(shù)關(guān)系式;

(2)是否存在點(diǎn)P使PEF是Rt?若存在,求此時(shí)的x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:﹣1+3=

查看答案和解析>>

同步練習(xí)冊答案