圓錐的側(cè)面展開的面積是,母線長為,則圓錐的高為 ________ .

試題分析:設(shè)圓錐的底面圓的半徑為r;圓錐的側(cè)面展開的面積是,圓錐的側(cè)面展開圖是扇形,其半徑是圓錐的母線,其弧長是底面圓的周長,所以,解得;而圓錐的母線,底面圓的半徑,以及圓錐的高構(gòu)成一個直角三角形,由勾股定理得圓錐的高h(yuǎn)=
點評:本題考查圓錐,解本題的關(guān)鍵是要知道圓錐的側(cè)面展開圖是扇形,以及該扇形與圓錐之間的關(guān)系
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)軸上A,B兩點對應(yīng)的數(shù)分別是-5,6,⊙A的半徑為5cm,⊙B的半徑為7cm.⊙A以每秒1cm的速度在數(shù)軸上沿正方向運動,⊙B固定不動.當(dāng)兩圓相切時,點A運動的時間為      秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

若兩圓的半徑分別為2和4,且圓心距為7,則兩圓的位置關(guān)系為(     )
A.外切B.內(nèi)切C.外離D.相交

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,C是⊙O上一點,OD⊥AC于點D,過點C作⊙O 的切線, 交OD的延長線與點E,連接AE.

(1)求證:AE與⊙O相切;
(2)連接BD并延長交AE于點F,若EC∥AB,OA=6,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在半徑為R的⊙O中,度數(shù)分別為36°和108°,弦CD與弦AB長度的差為    (用含有R的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將一塊含45°角的直角三角尺ABC在水平桌面上繞點B按順時針方向旋轉(zhuǎn)到A1BC1的位置,若AB=8cm,那么點A旋轉(zhuǎn)到A1所經(jīng)過的路線長為_______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC邊于點D,E是邊BC的中點,連接DE.

(1)求證:直線DE是⊙O的切線;
(2)連接OC交DE于點F,若OF=CF,求tan∠ACO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若正六邊形的邊長是1,則它的半徑是        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD的邊AB在X軸上,A與O重合,CD∥AB,D(0,),直線AE與CD交于E,DE=6。以BE為折痕,把點A翻恰好與點C重合;動點P從點D出發(fā)沿著D→C→B→O路徑勻速運動,速度為每秒4個單位;以P為圓心的⊙P半徑每秒增加個單位,當(dāng)點P在點D處時,⊙P半徑為;直線AE沿y軸正方向向上平移,速度為每秒個單位;直線AE、⊙P同時出發(fā),當(dāng)點P到終點O時兩者都停止,運動時間為t;

(1) 求點B的坐標(biāo);
(2)求當(dāng)直線AE與⊙P相切時t的值;
(3) 在整個運動過程中直線AE與⊙P相交的時間共有幾秒?(直接寫出答案)

查看答案和解析>>

同步練習(xí)冊答案