【題目】矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處,當△CEB′為直角三角形時,BE的長為( )
A. 3 B. C. 2或3 D. 3或
【答案】D
【解析】
當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內部時,如圖1所示.
連結AC,先利用勾股定理計算出AC=5,根據(jù)折疊的性質得∠AB′E=∠B=90°,而當△CEB′為直角三角形時,只能得到∠EB′C=90°,所以點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,則EB=EB′,AB=AB′=3,可計算出CB′=2,設BE=x,則EB′=x,CE=4-x,然后在Rt△CEB′中運用勾股定理可計算出x.
②當點B′落在AD邊上時,如圖2所示.此時ABEB′為正方形.
當△CEB′為直角三角形時,有兩種情況:
①當點B′落在矩形內部時,如圖1所示.
連結AC,
在Rt△ABC中,AB=3,BC=4,
∴AC==5,
∵∠B沿AE折疊,使點B落在點B′處,
∴∠AB′E=∠B=90°,
當△CEB′為直角三角形時,只能得到∠EB′C=90°,
∴點A、B′、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點B′處,
∴EB=EB′,AB=AB′=3,
∴CB′=5-3=2,
設BE=x,則EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得x=,
∴BE=;
②當點B′落在AD邊上時,如圖2所示.
此時ABEB′為正方形,
∴BE=AB=3.
綜上所述,BE的長為或3.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,是函數(shù)的圖像上一點,是y軸上一動點,四邊形ABPQ是正方形(點A.B.P.Q按順時針方向排列)。
(1)求a的值;
(2)如圖②,當時,求點P的坐標;
(3)若點P也在函數(shù)的圖像上,求b的值;
(4)設正方形ABPQ的中心為M,點N是函數(shù)的圖像上一點,判斷以點P.Q.M.N為頂點的四邊形能否是正方形,如果能,請直接寫出b的值,如果不能,請說明理由。
圖① 圖② 備用圖
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△AOB中,∠ABO=90°,OB=4,AB=8,直線y=-x+b分別交OA、AB于點C、D,且ΔBOD的面積是4.
(1)求直線AO的解析式;
(2)求直線CD的解析式;
(3)若點M是x軸上的點,且使得點M到點A和點C的距離之和最小,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】求知中學有一塊四邊形的空地ABCD,如下圖所示,學校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要250元,問學校需要投入多少資金買草皮?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=12,BC=9,點E,G分別為邊AB,AD上的點,若矩形AEFG與矩形ABCD相似,且相似比為,連接CF,則CF= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,點M從A點出發(fā)在線段AB上作勻速運動(不與A、B重合),同時點N從B點出發(fā)在線段BC上作勻速運動.
(1)如圖1,若M為AB中點,且DM⊥MN.請在圖中找出兩對相似三角形:
① ∽ _,② ∽ ,選擇其中一對加以證明;
(2)①如圖2,若AB=5,BC=3點M的速度為1個單位長度/秒,點N的速度為個單位長度/秒,運動的時間為t秒.當t為何值時,△DAM與△MBN相似?請說明理由;
②如果把點N的速度改為a個單位長度/秒,其它條件不變,是否存在a的值,使得△DAM與△MBN和△DCN這兩個三角形都相似?若存在,請求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,,E為BD中點,延長CD到點F,使.
求證:
求證:四邊形ABDF為平行四邊形
若,,,求四邊形ABDF的面積
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2﹣4ac>0;
②若方程兩根為﹣1和2,則2a+c=0;
③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。
A. ①②③ B. ①②④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,∠ABC的平分線與AC相交于點D,與⊙O過點A的切線相交于點E.
(1)∠ACB= °,理由是: ;
(2)猜想△EAD的形狀,并證明你的猜想;
(3)若AB=8,AD=6,求BD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com