【題目】在平面直角坐標(biāo)系中,點A(a,0),B(0b),且a,b滿足a22abb2(b4)20,點C為線段AB上一點,連接OC

(1)直接寫出a____,b_____

(2)如圖1,POC上一點,連接PAPB.若PAB0,∠BPC30°.求點P的縱坐標(biāo);

(3)如圖2,在(2)的條件下,點MAB上一動點,以OM為邊在OM的右側(cè)作等邊OMN,連接CN.若OCt,求ONCN的最小值(結(jié)果用含t的式子表示)

【答案】(1)a4,b4;(2)P的縱坐標(biāo)的為2;(3)ONCN的最小值為2t

【解析】

1)根據(jù)完全平方的非負(fù)性即可求解,

2)分別過A,BOC的垂線,垂足分別為D,E,由PABOAO,易證BDOOEA,得BDEOPE,由∠BPC30°,知PB2BD2EO,得PBPO,過PPFOB,可求得OFOB2,即點P的縱坐標(biāo)的為2

(3)如圖,以OA為邊在x軸下方作等邊OAG,連接OGAG,易證OMAONG,

于是∠OGN∠OAM45°,即點Ny軸與OG夾角為45°的直線GN上運動,作點C關(guān)于GN的對稱點H,連接OH,則ONCN的最小值即為OH的長再求出OH即可.

(1) a22abb2(b4)2(a-b)2(b4)2=0,

ab4

(2)分別過A,BOC的垂線,垂足分別為DE,

PABOAO,易證BDOOEA,

BDEOPE

∵∠BPC30°,

PB2BD2EO

PBPO,過PPFOB,

OFOB2,即點P的縱坐標(biāo)的為2

(3)如圖,以OA為邊在x軸下方作等邊OAG,連接OGAG,易證OMAONG,

∴∠OGN=∠OAM45°

即點Ny軸與OG夾角為45°的直線GN上運動,作點C關(guān)于GN的對稱點H,連接OH,則ONCN的最小值即為OH的長.

(2)PBPO,∠BPC30°,

∴∠ACO60°,

在四邊形ACOG中,∠COG360°60°60°45°60°135°,

OCNG,易證∠OCH90°

,∴∠H=∠ACH30°,

OH20C2t.即ONCN的最小值為2t

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師為了了解所教班級學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對本班部分學(xué)生進(jìn)行了為期半個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

(1)若D類男生有1名,請計算出C類女生的人數(shù),并將條形統(tǒng)計圖補充完整.
(2)為了共同進(jìn)步,李老師想從被調(diào)查的A類和D類學(xué)生中各隨機選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請用列表法或畫樹形圖的方法求出所選兩位同學(xué)恰好是兩位男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O為坐標(biāo)原點,已知ABC三個定點坐標(biāo)分別為A(﹣4,1),B(﹣3,3),C(﹣1,2).

(1)畫出ABC關(guān)于x軸對稱的△A1B1C1,點A,B,C的對稱點分別是點A1、B1、C1,直接寫出點A1,B1,C1的坐標(biāo);

(2)畫出點C關(guān)于y軸的對稱點C2,連接C1C2,CC2,C1C,△CC1C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將九年級部分男生擲實心球的成績進(jìn)行整理,分成5個小組(x表示成績,單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.

(1)這部分男生有多少人?其中成績合格的有多少人?
(2)這部分男生成績的中位數(shù)落在哪一組?扇形統(tǒng)計圖中D組對應(yīng)的圓心角是多少度?
(3)要從成績優(yōu)秀的學(xué)生中,隨機選出2人介紹經(jīng)驗,已知甲、乙兩位同學(xué)的成績均為優(yōu)秀,求他倆至少有1人被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖在△ABC,DAB上一點DFAC于點E,AEEC,DEEF,則下列說法中:①∠ADEEFC;②∠ADEECFFEC180°③∠BBCF180°;SABCS四邊形DBCF.正確的有(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O是等腰Rt△ABC的外接圓,點D是 上的一點,BD交AC于點E,若BC=4,AD= ,則AE的長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,BDABC的角平分線,DE、DF分別是ADBADC的角平分線,且BDFα,則AC的等量關(guān)系是________________(等式中含有α

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種水泥儲存罐的容量為25m3,它有一個輸入口和一個輸出口.從某時刻開始,只打開輸入口,勻速向儲存罐內(nèi)注入水泥,3min后,再打開輸出口,勻速向運輸車輸出水泥,又經(jīng)過2.5min水泥儲存罐注滿.已知水泥儲存罐內(nèi)的水泥量ym3)與時間xmin)之間的函數(shù)圖象如圖所示.

1)求每分鐘向儲存罐內(nèi)注入的水泥量;

2)當(dāng)3x5.5時,求yx之間的函數(shù)關(guān)系式;

3)水泥儲存罐每分鐘向運輸車輸出的水泥量是多少立方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,分別延長邊ABBC、CA,使得BD=AB,CE=2BC,AF=3CA,若△ABC的面積為1,則△DEF的面積為________.

查看答案和解析>>

同步練習(xí)冊答案