【題目】歐拉(Euler,1707年~1783年)為世界著名的數(shù)學(xué)家、自然科學(xué)家,他在數(shù)學(xué)、物理、建筑、航海等領(lǐng)域都做出了杰出的貢獻(xiàn).他對(duì)多面體做過(guò)研究,發(fā)現(xiàn)多面體的頂點(diǎn)數(shù)(Vertex)、棱數(shù)E(Edge)、面數(shù)F(Flat surface)之間存在一定的數(shù)量關(guān)系,給出了著名的歐拉公式.
(1)觀察下列多面體,并把下表補(bǔ)充完整:
名稱 | 三棱錐 | 三棱柱 | 正方體 | 正八面體 |
圖形 | ||||
頂點(diǎn)數(shù)V | 4 | 6 | 8 | |
棱數(shù)E | 6 | 12 | ||
面數(shù)F | 4 | 5 | 8 |
(2)分析表中的數(shù)據(jù),你能發(fā)現(xiàn)V、E、F之間有什么關(guān)系嗎?請(qǐng)寫(xiě)出關(guān)系式:____________________________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線y2與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),與y軸相交于點(diǎn)C,對(duì)稱軸與x軸相交于點(diǎn)H,與AC相交于點(diǎn)T.
(1)點(diǎn)P是線段AC上方拋物線上一點(diǎn),過(guò)點(diǎn)P作PQ∥AC交拋物線的對(duì)稱軸于點(diǎn)Q,當(dāng)△AQH面積最大時(shí),點(diǎn)M、N在y軸上(點(diǎn)M在點(diǎn)N的上方),MN,點(diǎn)G在直線AC上,求PM+NGGA的最小值.
(2)點(diǎn)E為BC中點(diǎn),EF⊥x軸于F,連接EH,將△EFH沿EH翻折得△EF'H,如圖所示2,再將△EF'H沿直線BC平移,記平移中的△EF'H為△E'F″H',在平移過(guò)程中,直線E'H'與x軸交于點(diǎn)R,則是否存在這樣的點(diǎn)R,使得△RF'H'為等腰三角形?若存在,求出R點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(1,1)在拋物線y=x2+(2m+1)x﹣n﹣1上
(1)求m、n的關(guān)系式;
(2)若該拋物線的頂點(diǎn)在x軸上,求出它的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線,,,…,(n為正整數(shù)),點(diǎn)A(0,1).
(1)如圖1,過(guò)點(diǎn)A作y軸垂線,分別交拋物線,,,…,于點(diǎn),,,…,(和點(diǎn)A不重合).
①求的長(zhǎng).
②求的長(zhǎng).
(2)如圖2,點(diǎn)P從點(diǎn)A出發(fā),沿y軸向上運(yùn)動(dòng),過(guò)點(diǎn)P作y軸的垂線,交拋物線于點(diǎn),,交拋物線于點(diǎn),,交拋物線于點(diǎn),,……,交拋物線于點(diǎn),(在第二象限).
①求的值.
②求的值.
(3)過(guò)x軸上的點(diǎn)Q(原點(diǎn)除外),作x軸的垂線分別交拋物線,,,…,于點(diǎn),,,…,,是否存在線段(i,j為正整數(shù)),使,若存在,求出i+j的最小值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,DE⊥AD,交AB于點(diǎn)E,AE為⊙O的直徑.
(1)判斷BC與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)求證:△ABD∽△DBE;
(3)若cosB=,AE=4,求CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線交x軸于,兩點(diǎn),與y軸交于點(diǎn)C,AC,BC.M為線段OB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)M作軸,交拋物線于點(diǎn)P,交BC于點(diǎn)Q.
(1)求拋物線的表達(dá)式;
(2)過(guò)點(diǎn)P作,垂足為點(diǎn)N.設(shè)M點(diǎn)的坐標(biāo)為,請(qǐng)用含m的代數(shù)式表示線段PN的長(zhǎng),并求出當(dāng)m為何值時(shí)PN有最大值,最大值是多少?
(3)試探究點(diǎn)M在運(yùn)動(dòng)過(guò)程中,是否存在這樣的點(diǎn)Q,使得以A,C,Q為頂點(diǎn)的三角形是等腰三角形.若存在,請(qǐng)求出此時(shí)點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn).
(1)求拋物線的解析式.
(2)點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過(guò)M作MN∥y軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng).
(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果將△ABC與△DEF各分割成兩個(gè)三角形,且△ABC所分的兩個(gè)三角形與△DEF所分的兩個(gè)三角形分別對(duì)應(yīng)相似,那么稱△ABC與△DEF互為“近似三角形”,將每條分割線稱為“近似分割線”.
(1)如圖1,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,∠A=30°,∠D=40°,請(qǐng)判斷這兩個(gè)三角形是否互為“近似三角形”?如果是,請(qǐng)直接在圖1中畫(huà)出一組分割線,并注明分割后所得兩個(gè)小三角形銳角的度數(shù);若不是,請(qǐng)說(shuō)明理由.
(2)判斷下列命題是真命題還是假命題,若是真命題,請(qǐng)?jiān)诶ㄌ?hào)內(nèi)打“√”;若是假命題,請(qǐng)?jiān)诶ㄌ?hào)內(nèi)打“×”.
①任意兩個(gè)直角三角形都是互為“近似三角形” ;
②兩個(gè)“近似三角形”只有唯一的“近似分割線” ;
③如果兩個(gè)三角形中有一個(gè)角相等,那么這兩個(gè)三角形一定是互為“近似三角形” .
(3)如圖2,已知△ABC與△DEF中,∠A=∠D=15°,∠B=45°,∠E=60°,且BC=EF=,判斷這兩個(gè)三角形是否互為“近似三角形”?如果是,請(qǐng)?jiān)趫D2中畫(huà)出不同位置的“近似分割線”,并直接分別寫(xiě)出“近似分割線”的和;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊AD,BC上,頂點(diǎn)F,H在菱形ABCD的對(duì)角線BD上.
(1)求證:BG=DE;
(2)若E為AD中點(diǎn),FH=2,求菱形ABCD的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com