【題目】在一個長為8分米,寬為5分米高為7分米的長方體上,截去一個長為6分米寬為5分米,深為2分米的長方體后,得到一個如圖所示的幾何體一只螞蟻要從該幾何體的頂點(diǎn)A處,沿著幾何體的表面到幾何體上和A相對的頂點(diǎn)B處吃食物,那么它需要爬行的最短路徑的長是 分米

【答案】 13

【解析】

試題分析:把立體圖展開可得

根據(jù)側(cè)面展開圖可由兩點(diǎn)之間,線段最短知AB最短故根據(jù)勾股定理可求得AB=13分米;

根據(jù)立體圖形可知把ACBE向外展開,得到直角邊長為5+1+=7,把中間凹面展開可得到直角邊為6+2+2=10,,然后根據(jù)勾股定理可求得最短距離為

的方式,得到兩直角邊分別為11和6然后根據(jù)勾股定理求得最短距離為=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有兩種包裝盒,大盒比小盒可多裝20克某一物品.已知120克這一物品單獨(dú)裝滿小盒比單獨(dú)裝滿大盒多1盒.
(1)問小盒每個可裝這一物品多少克?
(2)現(xiàn)有裝滿這一物品兩種盒子共50個.設(shè)小盒有n個,所有盒子所裝物品的總量為w克. ①求w關(guān)于n的函數(shù)解析式,并寫出定義域;
②如果小盒所裝物品總量與大盒所裝物品總量相同,求所有盒子所裝物品的總量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠A=100°,BI、CI分別平分∠ABC,∠ACB,則∠BIC=________,若BM、CM分別平分∠ABC,∠ACB的外角平分線,則∠M=__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=﹣x2+6x﹣9的圖象頂點(diǎn)為A,與y軸交于點(diǎn)B.若在該二次函數(shù)圖形上取一點(diǎn)C,在x軸上取一點(diǎn)D,使得四邊形ABCD為平行四邊形,則D點(diǎn)的坐標(biāo)為( )
A.(﹣9,0)
B.(﹣6,0)
C.(6,0)
D.(9,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一電線桿AB的影子分別落在了地上和墻上.同一時刻,小明豎起1米高的直桿MN,量得其影長MF為0.5米,量得電線桿AB落在地上的影子BD長3米,落在墻上的影子CD的高為2米.你能利用小明測量的數(shù)據(jù)算出電線桿AB的高嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點(diǎn)D,過點(diǎn)DDEAB,于點(diǎn)E

1)求證:△ACD≌△AED;

2)若∠B=30°CD=1,求BD的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將連續(xù)的奇數(shù),...按圖1中的方式排成一個數(shù)表,用一個十字框框住個數(shù),這樣框出的任意個數(shù)中,四個分支上的數(shù)分別用、、表示,如圖2所示。

1)計(jì)算:若十字框中間的數(shù)為,則______________;

2)發(fā)現(xiàn):移動十字框,比較與中間的數(shù).猜想:十字框中、的和是中間的數(shù)___________________;

3)驗(yàn)證:用含的式子表示、,并利用整式運(yùn)算驗(yàn)證(2)中猜想的正確性;

4)應(yīng)用:設(shè),判斷的值能否等于,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵居民節(jié)約用氣,某省決定對天然氣收費(fèi)實(shí)行階梯氣價(jià),階梯氣價(jià)劃分為兩個檔級:

(1)第一檔氣量為每戶每月30立方米(30立方米)以內(nèi),執(zhí)行基準(zhǔn)價(jià)格;

(2)第二檔氣量為每戶每月超出30立方米以上部分,執(zhí)行市場調(diào)節(jié)價(jià)格.

小明家5月份用氣35立方米,交費(fèi)112.5元;6月份用氣41立方米,交費(fèi)139.5元,若小明7月份用氣29立方米,則他家應(yīng)交費(fèi)________元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,∠A=90
(1)請用圓規(guī)和直尺作出⊙P,使圓心P在AC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明).
(2)若∠B=60,AB=3,求⊙P的面積.

查看答案和解析>>

同步練習(xí)冊答案