【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過(guò)點(diǎn)B作射線BB1∥AC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng).過(guò)點(diǎn)D作DH⊥AB于H,過(guò)點(diǎn)E作EF⊥AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.

(1)當(dāng)t為何值時(shí),AD=AB,并求出此時(shí)DE的長(zhǎng)度;
(2)當(dāng)△DEG與△ACB相似時(shí),求t的值.

【答案】
(1)解:∵∠ACB=90°,AC=3,BC=4, ∴AB= =5.

∵AD=5t,CE=3t, ∴當(dāng)AD=AB時(shí),5t=5,即t=1;

∴AE=AC+CE=3+3t=6,DE=6﹣5=1


(2)解:∵EF=BC=4,G是EF的中點(diǎn),

∴GE=2.

當(dāng)AD<AE(即t< )時(shí),DE=AE﹣AD=3+3t﹣5t=3﹣2t,

若△DEG與△ACB相似,則

,

∴t= 或t= ;

當(dāng)AD>AE(即t> )時(shí),DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,

若△DEG與△ACB相似,則 , ∴ ,

解得t= 或t=

綜上所述,當(dāng)t= 時(shí),△DEG與△ACB相似


【解析】(1)先根據(jù)勾股定理求出AB的長(zhǎng),再根據(jù)點(diǎn)D的運(yùn)動(dòng)速度及AD=AB,求出t的值,然后根據(jù)點(diǎn)E的運(yùn)動(dòng)速度求出AE的長(zhǎng),從而可求出DE的長(zhǎng)。
(2)根據(jù)EF=BC=4,G是EF的中點(diǎn),求出GE的長(zhǎng),要證明△DEG與△ACB,分兩種情況:DE:EG=BC:AC或DE:EG=AC:BC,根據(jù)這些線段成比例,即可求出t的值(注意點(diǎn)D的運(yùn)動(dòng)過(guò)程中,要分兩種情況:AD<AE和AD>AE)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)你補(bǔ)全證明過(guò)程:如圖,DGBCACBC,EFAB,∠1=2,求證:EFCD

證明:∵DGBC,ACBC(已知)

∴∠DGB=90°,∠ACB=90°①(

∴∠DGB=ACB ( )

DGAC ( )

∴∠2= ________ ⑤(

又∠1=2 ⑥(

∴∠1=DCA ⑦(

EFCD ⑧(

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料,解決下列問(wèn)題:

材料一:對(duì)非負(fù)實(shí)數(shù)x“四舍五入到個(gè)位的值記為,即:當(dāng)n為非負(fù)整數(shù)時(shí),如果,則;反之,當(dāng)n為非負(fù)整數(shù)時(shí),如果;則,例如:,,

材料二:平面直角坐標(biāo)系中任意兩點(diǎn),我們把叫做、兩點(diǎn)間的折線距離,并規(guī)定是一定點(diǎn),是直線上的一動(dòng)點(diǎn),我們把的最小值叫做到直線的折線距離,例如:若

如果,寫(xiě)出實(shí)數(shù)x的取值范圍;已知點(diǎn),點(diǎn),且,求a的值.

m為滿足的最大值,求點(diǎn)到直線的折線距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】初三年級(jí)的一場(chǎng)籃球比賽中,如圖隊(duì)員甲正在投籃,已知球出手時(shí)離地面高 m,與籃圈中心的水平距離為7m,當(dāng)球出手后水平距離為4m時(shí)到達(dá)最大高度4m,設(shè)籃球運(yùn)行的軌跡為拋物線,籃圈距地面3m.

(1)建立如圖所示的平面直角坐標(biāo)系,求拋物線的解析式并判斷此球能否準(zhǔn)確投中?
(2)此時(shí),若對(duì)方隊(duì)員乙在甲前面1m處跳起蓋帽攔截,已知乙的最大摸高為3.1m,那么他能否獲得成功?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知∠AOB和∠COD的兩邊分別互相垂直,且∠COD比∠AOB3倍少60°,則∠COD的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的函數(shù)圖象與x軸、y軸分別交于點(diǎn)AB,以線段AB為直角邊在第一象限內(nèi)作RtABC,且使∠ABC30°

1)求ABC的面積;

2)如果在第二象限內(nèi)有一點(diǎn)Pm,),試用含m的代數(shù)式表示APB的面積,并求當(dāng)APBABC面積相等時(shí)m的值;

3)是否存在使QAB是等腰三角形并且在坐標(biāo)軸上的點(diǎn)Q?若存在,請(qǐng)寫(xiě)出點(diǎn)Q所有可能的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠BCD=90°,BC=DC,延長(zhǎng)AD到E,使DE=AB.

(1)求證:∠ABC=∠EDC;

(2)求證:△ABC≌△EDC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于第二、四象限內(nèi)的A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,點(diǎn)B的坐標(biāo)是(m,﹣4),連接AO,AO=5,sin∠AOC=

(1)求反比例函數(shù)的解析式;
(2)連接OB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于點(diǎn)Pa,b),點(diǎn)Qc,d),如果abcd,那么點(diǎn)P與點(diǎn)Q就叫作等差點(diǎn).例如:點(diǎn)P4,2),點(diǎn)Q(﹣1,﹣3),因421﹣(﹣3)=2,則點(diǎn)P與點(diǎn)Q就是等差點(diǎn).如圖在矩形GHMN中,點(diǎn)H2,3),點(diǎn)N(﹣2,﹣3),MNy軸,HMx軸,點(diǎn)P是直線yx+b上的任意一點(diǎn)(點(diǎn)P不在矩形的邊上),若矩形GHMN的邊上存在兩個(gè)點(diǎn)與點(diǎn)P是等差點(diǎn),則b的取值范圍為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案