【題目】如圖,四邊形ABCD是正方形,對(duì)角線AC,BD交于點(diǎn)O,下列結(jié)論:①OA=OB;②∠ACB=45°;③AC⊥BD;④正方形ABCD有四條對(duì)稱軸.上述結(jié)論正確的有( )
A.①②③④ B.①②③ C.②③④ D.①③④
【答案】A
【解析】
試題分析:由正方形的各種性質(zhì)①正方形的四條邊都相等,四個(gè)角都是直角;②正方形的兩條對(duì)角線相等,互相垂直平分,并且每條對(duì)角線平分一組對(duì)角; ③正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì) ④兩條對(duì)角線將正方形分成四個(gè)全等的等腰直角三角形,同時(shí),正方形又是軸對(duì)稱圖形,有四條對(duì)稱軸,逐項(xiàng)分析即可.
解:∵四邊形ABCD是正方形,
∴AO=CO=BO=DO,AC⊥BD,
∴∠ACB=45°,故選項(xiàng)①②③正確;
∵AD=BC=CD=AD,AD∥BC,AB∥DC,
∴正方形ABCD有四條對(duì)稱軸,故選項(xiàng)④正確,
故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值:
(1)已知求的值.
(2)先化簡,再求值.,其中,.
已知x=2, y=-1;求(x-5y)(-x-5y)-(-x+5y)2的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某天小明發(fā)現(xiàn)陽光下電線桿AB的影子落在土坡的坡面CD和地面BC上,量的CD=8米,BC=20米,斜坡CD的坡度比為1:,且此時(shí)測(cè)得1米桿的影長為2米,則電線桿的高度為( )
A.(14+2)米 B.28米 C.(7+)米 D.9米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把拋物線y=x2+bx+c的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位,所得圖象的解析式為y=x2﹣3x+5,則( )
A.b=3,c=7B.b=6,c=3C.b=﹣9,c=﹣5D.b=﹣9,c=21
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次數(shù)學(xué)活動(dòng)課上,老師帶領(lǐng)學(xué)生去測(cè)一條南北流向的河寬,如圖所示,某學(xué)生在河?xùn)|岸點(diǎn)A處觀測(cè)到河對(duì)岸水邊有一點(diǎn)C,測(cè)得C在A北偏西31°的方向上,沿河岸向北前行40米到達(dá)B處,測(cè)得C在B北偏西45°的方向上,請(qǐng)你根據(jù)以上數(shù)據(jù),求這條河的寬度.(參考數(shù)值:tan31°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解方程x4﹣5x2+4=0,我們可設(shè)x2=y,則x4=y2,原方程可化為y2﹣5y+4=0.解得y1=1,y2=4,當(dāng)y=1時(shí),x2=1,所以x=±1;當(dāng)y=4時(shí),x2=4,所以x=±2.故原方程的解為x1=1,x2=﹣1,x3=2,x4=﹣2.以上解題方法主要體現(xiàn)的數(shù)學(xué)思想是( )
A.?dāng)?shù)形結(jié)合 B.換元與降次 C.消元 D.公理化
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com