【題目】每個(gè)小正方形都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形,菱形OABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)畫出菱形OABC關(guān)于原點(diǎn)O的中心對(duì)稱圖形OA1B1C1,并直接寫出點(diǎn)B1的坐標(biāo);
(2)將菱形OABO繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到菱形OA2B2C2,請(qǐng)畫出菱形OA2B2C2并求出點(diǎn)B旋轉(zhuǎn)到B2的路徑長(zhǎng).
【答案】(1)圖見解析,B1的坐標(biāo)為(﹣4,﹣4);(2)見解析,.
【解析】
(1)利用關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征寫出A1、B1、C1的坐標(biāo),然后描點(diǎn)即可;
(2)利用旋轉(zhuǎn)的性質(zhì)畫出A2、B2、C2,從而得到菱形OA2B2C2,利用弧長(zhǎng)公式計(jì)算點(diǎn)B旋轉(zhuǎn)到B2的路徑長(zhǎng).
(1)如圖,四邊形OA1B1C1為所作;點(diǎn)B1的坐標(biāo)為(﹣4,﹣4);
(2)如圖,菱形OA2B2C2為所作,OB,點(diǎn)B旋轉(zhuǎn)到B2的路徑長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,點(diǎn)D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且矩形其面積為8,此拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AC=BC,AB=10,以AB為斜邊向上作Rt△ABD,使∠ADB=90°.連接CD,若CD=7,則AD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A,B的坐標(biāo)分別為(4,0),(3,2).
(1)畫出△AOB關(guān)于原點(diǎn)O對(duì)稱的圖形△COD;
(2)將△AOB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°得到△EOF,畫出△EOF;
(3)點(diǎn)D的坐標(biāo)是 ,點(diǎn)F的坐標(biāo)是 ,此圖中線段BF和DF的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊三角形ABC中,D是邊AC上一點(diǎn),連接BD,將△BCD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長(zhǎng)是9.其中,正確結(jié)論的個(gè)數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x1、x2是關(guān)于x的方程2x2﹣4mx+2m2+3m+2=0的兩個(gè)實(shí)根,當(dāng)m=_____時(shí),x12+x22有最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:y=﹣x﹣1,雙曲線y=,在l上取一點(diǎn)A1,過A1作x軸的垂線交雙曲線于點(diǎn)B1,過B1作y軸的垂線交l于點(diǎn)A2,請(qǐng)繼續(xù)操作并探究:過A2作x軸的垂線交雙曲線于點(diǎn)B2,過B2作y軸的垂線交l于點(diǎn)A3,…,這樣依次得到l上的點(diǎn)A1,A2,A3,…,An,…記點(diǎn)An的橫坐標(biāo)為an,若a1=2,則a2018=_____;若要將上述操作無限次地進(jìn)行下去,則a1不可能取的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用一面墻(墻的長(zhǎng)度不超過45m),用80m長(zhǎng)的籬笆圍一個(gè)矩形場(chǎng)地.
(1)怎樣圍才能使矩形場(chǎng)地的面積為750m2?
(2)能否使所圍矩形場(chǎng)地的面積為810m2 ,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.
(1)求證: .
(2)由(1)中的結(jié)論可知,等腰三角形ABC中,當(dāng)頂角∠A的大小確定時(shí),它的對(duì)邊(即底邊BC)與鄰邊(即腰AB或AC)的比值也就確定,我們把這個(gè)比值記作T(A),即
,如T(60°)=1.
①理解鞏固:T(90°)= ________,T(120°)=_________,若α是等腰三角形的頂角,則T(α)的取值范圍是_____________________;
②學(xué)以致用:如圖2,圓錐的母線長(zhǎng)為9,底面直徑PQ=8,一只螞蟻從點(diǎn)這沿著圓錐的側(cè)面爬行到點(diǎn)Q,求螞蟻爬行的最短路徑長(zhǎng)(精確到0.1).
(參考數(shù)據(jù):T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com