精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在菱形ABCD中,點P在對角線AC上,且PA=PD,OPAD的外接圓.

(1)求證:AB是⊙O的切線;

(2)若AC=8,tanBAC=,求⊙O的半徑.

【答案】(1)見解析;(2)

【解析】1)連結OP、OA,OPADE,PA=PD得弧AP=DP根據垂徑定理的推理得OPAD,AE=DE,則∠1+∠OPA=90°,而∠OAP=OPA所以∠1+∠OAP=90°,再根據菱形的性質得∠1=2,所以∠2+∠OAP=90°,然后根據切線的判定定理得到直線AB與⊙O相切;

2)連結BD,AC于點F,根據菱形的性質得DBAC互相垂直平分AF=4,tanDAC=,得到DF=2,根據勾股定理得到AD==2,求得AE=設⊙O的半徑為R,OE=R,OA=R,根據勾股定理列方程即可得到結論.

1)連結OP、OA,OPADE,如圖,

PA=PD,∴弧AP=DP,OPAD,AE=DE,∴∠1+∠OPA=90°.

OP=OA∴∠OAP=OPA,∴∠1+∠OAP=90°.

∵四邊形ABCD為菱形,∴∠1=2∴∠2+∠OAP=90°,OAAB,

∴直線AB與⊙O相切

2)連結BD,AC于點F,如圖,

∵四邊形ABCD為菱形,DBAC互相垂直平分.

AC=8,tanBAC=AF=4,tanDAC==,

DF=2,AD==2,AE=

RtPAEtn1==,PE=

設⊙O的半徑為ROE=R,OA=R

RtOAE中,∵OA2=OE2+AE2,R2=(R2+2,

R=,即⊙O的半徑為

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】一個三角形有兩邊長分別為4、6,則第三邊上的中線l的取值范圍是(

A.2l10B.1l5C.3l9D.不能確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)操究發(fā)現(xiàn):如圖1,ABC為等邊三角形,點DAB邊上的一點,∠DCE=30°,DCF=60°CF=CD

①求∠EAF的度數;

DEEF相等嗎?請說明理由

(2)類比探究:如圖2,ABC為等腰直角三角形,∠ACB=90°,點DAB邊上的一點,∠DCE=45°,CF=CD,CFCD,請直接寫出下列結果:

①∠EAF的度數

②線段AE,ED,DB之間的數量關系

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,DBC上一點,DEAB,交AC于點E,DFAC,交ABF

1)直接寫出圖中與∠BAC構成的同旁內角.

2)請說明∠A與∠EDF相等的理由.

3)若∠BDE +∠CDF234°,求∠BAC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列命題的逆命題,是假命題的是(

A.兩直線平行,內錯角相等B.全等三角形的對應邊相等

C.對頂角相等D.有一個角為度的三角形是直角三角形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小張騎自行車勻速從甲地到乙地,在途中休息了-段時間后,仍按原速行駛他距乙地的距離與時間的關系如圖中折線所示,小李騎摩托車勻速從乙地到甲地,比小張晚出發(fā)段時間,他距乙地的距離與時間的關系如圖中線段AB所示,

(1)小李到達甲地后,再經過 小時小張到達乙地;小張騎自行車的速度是 千米/小時;

(2)請你寫出小李距乙地的距離y(千米)與時間x(小時)之間的函數關系(不要求寫出定義域);

(3)若小李想在小張休息期間(4小時和第5小時不算小張休息)與他相遇,則他出發(fā)的時間x應在什么范圍?(直接寫出答案)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】用適當方法解下列方程:

1)(3x+12﹣9=0

2x2+4x﹣1=0

33x2﹣2=4x

4)(y+22=1+2y

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀并回答問題.

求一元二次方程ax2+bx+c=0(a≠0)的根(用配方法).

解:ax2+bx+c=0,

a≠0,x2+x+=0,第一步

移項得:x2+x=﹣,第二步

兩邊同時加上(2,得x2+x+( 。2=﹣+(2,第三步

整理得:(x+2=直接開方得x+,第四步

x=,

x1=,x2=,第五步

上述解題過程是否有錯誤?若有,說明在第幾步,指明產生錯誤的原因,寫出正確的過程;若沒有,請說明上述解題過程所用的方法.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某網店嘗試用單價隨天數而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10/件的商品,經過統(tǒng)計得到此商品單價在第x天(x為正整數)銷售的相關信息,如表所示:

銷售量n(件)

n=50﹣x

銷售單價m(元/件)

m=20+x

(1)請計算第幾天該商品單價為25/件?

(2)求網店銷售該商品30天里所獲利潤y(元)關于x(天)的函數關系式;

(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案