【題目】如圖,ABC的頂點坐標分別為A(0,1),B(3,3),C(1,3),

1)①畫出ABC關于原點O的中心對稱圖形A1B1C1

②畫出ABC繞原點O逆時針旋轉90°得到的A2B2C2,寫出點C2的坐標;

2)若ABC上任意一點P(mn)繞原點O逆時針旋轉90°的對應點為Q,則點Q的坐標為________.(用含mn的式子表示)

【答案】1)①見解析,②見解析,點C2的坐標為(-3,1);(2(-nm)

【解析】

(1)①根據(jù)關于原點對稱的點的坐標特征得到A1、B1C1的坐標,然后描點即可;
②利用網(wǎng)格特點和旋轉的性質畫出A、B、C的對應點A2、B2、C2,然后順次連接,從而得到點C2的坐標;
(2)利用②中對應點的規(guī)律寫出Q的坐標.

解:(1)①如圖,A1B1C1為所求;

②如圖,A2B2C2為所求,點C2的坐標為(-3,1)

2)∵A(0,1) 繞原點O逆時針旋轉90°的對應點A2-1,0),B(3,3) 繞原點O逆時針旋轉90°的對應點B2-3,3, C(1,3) 繞原點O逆時針旋轉90°的對應點C2-3,1),

∴點Q的坐標為(-n,m).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點DBC是⊙O的切線,EBC的中點,連接AE、DE

1)求證:DE是⊙O的切線;

2)設△CDE的面積為 S1,四邊形ABED的面積為 S2.若 S25S1,求tanBAC的值;

3)在(2)的條件下,若AE3,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是矩形ABCD的邊AD的中點,且BE⊥AC于點F,則下列結論中錯誤的是( 。

A. AF=CF B. ∠DCF=∠DFC

C. 圖中與AEF相似的三角形共有5個 D. tan∠CAD=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器商場銷售A,B兩種型號計算器,兩種計算器的進貨價格分別為每臺30元,40. 商場銷售5A型號和1B型號計算器,可獲利潤76元;銷售6A型號和3B型號計算器,可獲利120.

1)求商場銷售A,B兩種型號計算器的銷售價格分別是多少元?(利潤=銷售價格進貨價格)

2)商場準備用不多于2500元的資金購進A,B兩種型號計算器共70臺,問最少需要購進A型號的計算器多少臺?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù)y=的圖象交于C、D兩點,DEx軸于點E,已知C點的坐標是(﹣6,﹣1),DE=3.

(1)求反比例函數(shù)與一次函數(shù)的解析式.

(2)根據(jù)圖象直接回答:當x為何值時,一次函數(shù)的值小于反比例函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,已知二次函數(shù)y=-x2+bx+c的圖像與x軸的交點為點A(3,0)和點B,與y軸交于點C(0,3),連接AC.

1)求這個二次函數(shù)的解析式;

2)在(1)中位于第一象限內(nèi)的拋物線上是否存在點D,使得ACD的面積最大?若存在,求出點D的坐標及ACD面積的最大值,若不存在,請說明理由.

3)在拋物線上是否存在點E,使得ACE是以AC為直角邊的直角三角形如果存在,請直接寫出點E的坐標即可;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,AB=AC≠BC,點D和點A在直線BC的同側,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,連接AD,求∠ADB的度數(shù).(不必解答)

(1)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構造△ABD的軸對稱圖形△ABD′,連接CD′(如圖2),然后利用α=90°,β=30°以及等邊三角形等相關知識便可解決這個問題.

請結合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是   三角形;∠ADB的度數(shù)為   

(2)在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);

(3)在原問題中,過點A作直線AE⊥BD,交直線BDE,其他條件不變?nèi)?/span>BC=7,AD=2.請直接寫出線段BE的長為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y=x的圖象如圖所示,則方程ax2+bx+c=0(a≠0)的兩根之和

A. 大于0 B. 等于0 C. 小于0 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明為測量某鐵塔AB的高度,他在離塔底B10C處測得塔頂?shù)难鼋?/span>α=43°,已知小明的測角儀高CD=1.5米,求鐵塔AB的高.(精確到0.1米)

(參考數(shù)據(jù):sin43° =0.6820, cos43° =0.7314 tan43° =0.9325

查看答案和解析>>

同步練習冊答案