【題目】已知二次函數(shù)y=﹣2x2﹣4x+1,先用配方法轉(zhuǎn)化成y=a(x﹣h)2+k,再寫出函數(shù)的頂點(diǎn)坐標(biāo)、對(duì)稱軸以及描述該函數(shù)的增減性.
【答案】頂點(diǎn)坐標(biāo)是(﹣1,3),對(duì)稱軸為x=﹣1,拋物線開口方向向下,當(dāng)x<﹣1時(shí),y隨x的增大而增大,當(dāng)x>﹣1時(shí),y隨x的增大而減小
【解析】
利用配方法整理成頂點(diǎn)式,然后寫出頂點(diǎn)坐標(biāo)和對(duì)稱軸,由對(duì)稱軸和拋物線開口方向?qū)懗龊瘮?shù)的單調(diào)性.
解:∵y=﹣2x2﹣4x+1=﹣2(x+1)2+3.
∴該函數(shù)的圖象的頂點(diǎn)坐標(biāo)是(﹣1,3),對(duì)稱軸為x=﹣1,拋物線開口方向向下,
∴當(dāng)x<﹣1時(shí),y隨x的增大而增大,當(dāng)x>﹣1時(shí),y隨x的增大而減。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一條長為20 cm的細(xì)繩圍成一個(gè)等腰三角形,能圍成有一邊的長是5 cm的等腰三角形嗎?如果能,求出其他兩邊的長;如果不能,說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)E是AD上的一點(diǎn),∠DBC=∠BED.
(1)求證:BC是⊙O的切線;
(2)已知AD=3,CD=2,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家商店將某種服裝按成本價(jià)提高40%后標(biāo)價(jià),又以8折優(yōu)惠賣出,結(jié)果每件作服裝仍可獲利15元,則這種服裝每件的成本是()
A. 120元 B. 125元 C. 135元 D. 140元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=BC=AC=12cm,現(xiàn)有兩點(diǎn)M、N分別從點(diǎn)A、點(diǎn)B同時(shí)出發(fā),沿三角形的邊運(yùn)動(dòng),已知點(diǎn)M的速度為1cm/s,點(diǎn)N的速度為2cm/s.當(dāng)點(diǎn)N第一次到達(dá)B點(diǎn)時(shí),M、N同時(shí)停止運(yùn)動(dòng).
(1)點(diǎn)M、N運(yùn)動(dòng)幾秒后,M、N兩點(diǎn)重合?
(2)點(diǎn)M、N運(yùn)動(dòng)幾秒后,可得到等邊三角形△AMN?
(3)當(dāng)點(diǎn)M、N在BC邊上運(yùn)動(dòng)時(shí),能否得到以MN為底邊的等腰三角形AMN?如存在,請(qǐng)求出此時(shí)M、N運(yùn)動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算-a(a2+2)的結(jié)果是( )
A. -2a3-a B. -2a3+a
C. -a3-2a D. -a3+2a
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,邊AB的垂直平分線DE交AB于點(diǎn)E,交BC于點(diǎn)D,CD=3,則BC的長為( )
A.6
B.9
C.10
D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:在△ABC中,AC=BC,∠ACB=90°,點(diǎn)D是AB的中點(diǎn),點(diǎn)E是AB邊上一點(diǎn).
(1)如圖①,BF垂直CE于點(diǎn)F,交CD于點(diǎn)G,試說明AE=CG;
(2)如圖②,作AH垂直于CE的延長線,垂足為H,交CD的延長線于點(diǎn)M,則圖中與BE相等的線段是 , 并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com